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CHAPTER 1: INTRODUCTION 

1.1 Relevance of early emotion systems for lifelong health  

 Charles Darwin was one of the first to recognize that humans and some nonhuman 

animals are equipped with innate systems for perceiving, experiencing, and regulating emotional 

states (Darwin, 1897). Old as these systems are in evolution, they continue to play a critical role 

in regulating behavior and survival. Emotion systems are online in early life, allowing, for 

instance, a baby to read the facial expressions of his or her mother (Bornstein and Arterberry, 

2003). Emotional expressions are considered a central form of communication for humans and 

other social animals (Ekman, 1992).  

 The range of mental health disorders characterized by emotional disturbances exemplifies 

the critical importance of emotion systems for human health and happiness. Emotional 

disturbances are, however, most central to the mood and anxiety disorders, which affect roughly 

30% and 20% of the population, respectively (Kessler et al., 2005b). Considering mood disorders 

alone, this prevalence rate extrapolates to roughly 350 million people affected globally (World 

Health Organization, 2015). Emotional disorders are highly comorbid, with as many as 60% 

individuals with depression also having a comorbid anxiety disorder at some point in their life 

(Kaufman and Charney, 2000). They are also among the most debilitating and lethal conditions. 

Mood disorders have been named the leading cause of disability worldwide (World Health 

Ferrari et al., 2013, Organization, 2015), costing more than $50 billion a year in lost economic 

productivity (Kessler et al., 2006), $26 billion in health care (Greenberg et al., 2003), and 

underlie nearly 70% of all suicides (Reddy, 2010). The fact that emotional disturbances represent 

a chief health and societal burden is incontrovertible.  
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 Like many other mental health conditions, mood and anxiety disorders have their roots in 

childhood and adolescence (Kessler et al., 2005a). There is a substantial uptick in disease onset 

around the time of puberty (Angold et al., 1998). Perhaps not coincidentally, this is a time when 

emotion processing neural systems are undergoing dramatic reorganization (Forbes et al., 2010, 

Pfeifer et al., 2011) and may thus be vulnerable to environmental insults or expression of genetic 

risk (Giedd et al., 2008). Early onset of emotional symptomology is associated with higher risk 

of later psychiatric morbidity, including substance use disorder, cognitive impairment, and 

increased risk of suicide (Birmaher et al., 2002). Suicide was named the second leading cause of 

death among US youth aged 12-17 (Perou et al., 2013). These findings indicate that early 

emotion systems set the stage for lifelong health and wellbeing. They also underscore the 

importance of understanding how abnormalities in emotion processing neurocircuitry in early 

life could lead to the development of emotional psychopathology.    

 Poor mental health can be detrimental to physical wellbeing. For instance, there is 

extensive evidence for a link between negative affect (NA), defined as the tendency to 

experience negative emotions (Watson and Clark, 1984), and risk of cancer, heart disease, 

diabetes and pulmonary disease (Spiegel and Giese-Davis, 2003, Sobel and Markov, 2005). 

Individuals with physical conditions, in turn, are at increased risk for cognitive and emotional 

problems (Turner and Noh, 1988), highlighting the bidirectional nature of brain-body health.  

1.2 Brain systems that underlie emotion processing and regulation 

 Some of our earliest understanding of the neural bases of emotion came from lesions 

studies. Lesions in temporal lobes in nonhuman primates caused significant loss of emotional 

reactivity and aberrant social behavior (Klüver and Bucy, 1937). Lesions, for example, caused 

nonhuman primates to fail to exhibit their innate fear and avoidant behavior of snakes. This work 
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demonstrated that the medial temporal lobes are critical for emotion, which became the 

centerpiece for Paul MacLean’s influential neuroanatomic model in 1949 (MacLean, 1949). He 

viewed the “limbic system” as being responsible only for emotions and represents as 

evolutionary older part of the brain that can be found in other mammals and reptiles. The cortex, 

on the other hand, is responsible for our cognitions. This view, however, turned out to be too 

simplistic. For instance, there are cortical sites that play critical roles in emotion processing and 

regulation, leading many contemporary researchers to refer to the “corticolimbic” emotion 

processing circuitry.  Nonetheless, some of the structures identified by MacLean are still 

considered central emotional sites and have been the focus of much research in affective 

neuroscience over the past few decades.  

 Recent advances in functional neuroimaging have brought to light additional regions that 

participate in emotion processing, and also elaborated our understanding of the role that 

particular regions play. For instance, the amygdala was classically viewed as the fear center in 

the brain, critical for detecting and responding to environmental threats (LeDoux, 2000). More 

recent studies expand this view by showing that the amygdala is also engaged by positive stimuli 

(Fusar-Poli et al., 2009) and cues that predict reward (O'Doherty, 2004), and responds preferably 

to faces of a mother’s own child compared to an unfamiliar child (Gobbini and Haxby, 2007). 

This has led to broader characterization of the amygdala as a structure important for detecting the 

biological, social, and emotional salience of environmental stimuli (Adolphs, 2010). The 

amygdala is nowadays considered a critical hub for recognizing salient information and 

subsequently generating appropriate reactions in physiology and behavior (Bogdan et al., 2016). 

 Importantly, the amygdala is a heterogeneous structure that consists of 13 

cytoarchitectonically distinct nuclei (Sah et al., 2003b). These are broadly divided into three 
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subregions that have different functional roles and different patterns of connectivity: (1) 

Centromedial (CM) amygdala is involved in allocating attention to relevant stimuli (Davis and 

Whalen, 2001) and mediating increased vigilance (Dringenberg and Vanderwolf, 1996). (2) 

Basolateral (BL) amygdala has been linked to associative learning processes, and (3) Superficial 

(SF) amygdala has been implicated in social/affective processing (LeDoux, 2003, Phelps and 

LeDoux, 2005, Goossens et al., 2009). Although the spatial resolution of functional magnetic 

resonance imaging (fMRI) is limited, cytoarchitechtonically-based amygdala fMRI analyses 

have yielded consistent, replicated delineation of differential connectivity of major amygdala 

subregions in adults and in children (Etkin et al., 2009, Roy et al., 2009, Roy et al., 2013, Brown 

et al., 2014). Thus, we will test for localization of effects in different amygdala subregions.    

 Beyond the amygdala, additional corticolimbic emotion processing regions include the 

hippocampus, insula, prefrontal cortex (PFC), and anterior cingulate cortex (ACC). These 

regions are highly interconnected with the amygdala, and contribute to different aspects of 

emotional processing. The hippocampus is involved in contextual modulation of emotional 

expression and memory (Ji and Maren, 2007), and the insula plays a more general role in 

saliency processing, detecting interoceptive, autonomic and emotional information (Seeley et al., 

2007). Different areas of the PFC and ACC contribute to emotion appraisal, generation, and 

regulation (Etkin et al., 2011). Recent reviews support a general dorsal/ventral distinction in 

medial PFC (mPFC) and adjacent ACC wherein dorsal areas are involved in appraisal and 

generation of emotion, whereas ventral regions (i.e., pregenual and subgenual regions) are 

involved in automatic forms of emotion regulation via suppression of amygdala activity (Etkin et 

al., 2011). Explicit forms of emotion regulation, in contrast, are likely subserved by dorsal PFC 

regions, and may work by recruiting ventral mPFC/ACC circuitry (Schiller and Delgado, 2010). 
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A meta-analysis of 105 fMRI emotion processing studies reveals that thalamus, striatum, 

brainstem, hypothalamus and visual regions also contribute to the processing of emotion (Fusar-

Poli et al., 2009).   

 In this research, we will focus a priori on key regions involved in emotion processing and 

regulation. Specifically, we will examine the amygdala for its central role in biasing emotional 

processing, and amygdala-ventral anterior cingulate cortex (vACC) circuitry, which is critical for 

emotion regulation. The amygdala is a part of the brain’s “salience network”, responsible for 

detecting, integrating, and filtering relevant interoceptive, autonomic, and emotional information 

(Seeley et al., 2007, Taylor et al., 2009). In Chapters 3 and 5, we expand our view to evaluate 

other regions of the salience network that are highly interconnected with the amygdala, including 

the insula and dorsal anterior cingulate cortex (dACC). In Chapter 5 we also begin to address 

how childhood trauma affects interactions between salience network regions, and between the 

salience network and other brain networks.  

1.3 Genetic and environmental variables that shift early emotion systems  

 We begin this section by reviewing several basic principles of brain development to 

provide a context for understanding typical and atypical emotion neurocircuitry in youth. The 

brain undergoes a protracted developmental course across the first two decades of life (Gogtay et 

al., 2004), mediated by an evolutionarily refined genetic program of development that 

coordinates the emergence of an array of behaviors at different developmental stages. 

Importantly, each individual holds a unique genetic plan. Thus, genetic variation between 

individuals can lead to variations in emotional experience and behavior, and variations in the 

emotion processing neurocircuitry underlying this experience.  
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 Risk for emotional psychopathology also has a strong genetic component, evidenced by 

high rates of heritability and identification of common genetic polymorphisms (Cross-Disorder 

Group of the Psychiatric Genomics Consortium, 2013, Waszczuk et al., 2014, de Moor et al., 

2015). Studies find that healthy individuals at high familial risk for depression (i.e., with an 

affected first-degree relative) show structural and functional variation in corticolimbic regions 

that is similar to affected individuals (Fusar-Poli et al., 2012, Foland-Ross et al., 2013). This 

suggests that at least some of the heritable risk for these disorders may be reflected by heritable 

variation in emotion processing neurocircuitry. Genetic factors may be particularly important for 

risk in early life, accounting for 40.4% of variance in risk of emotional psychopathology in 

adolescents (Glowinski et al., 2003). 

 Genetic studies implicate a large number of genes in emotional psychopathology, 

suggesting that heritable effects are mediated by smaller contributions of many genes. Of the 

most commonly studied are genes that encode for brain-derived neurotrophic factor (BDNF), the 

serotonin transporter (SERT), and the glucocorticoid chaperone protein (FKBP5; Mahan and 

Ressler, 2012). Animal research shows that these gene variants convey altered function in 

systems important for regulating emotional behavior and the stress response, and are associated 

with functional and structure variation in corticolimbic regions (Chen et al., 2006, Kalueff et al., 

2010, Smoller, 2016). Examination of common functional genetic variants is appealing because 

of the highly conserved nature of emotion neurocircuitry across species, allowing for translation 

from nonhuman animal to in vivo human research. Indeed, studies in humans show similar 

effects of these gene variants on structure and function of emotion processing neurocircuitry 

(Hariri et al., 2002a, Mukherjee et al., 2011, Holz et al., 2015), and that many of these same gene 
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variants interact with environmental exposures to convey risk for emotional psychopathology 

(Caspi et al., 2010, Zannas and Binder, 2014).  

 The unfolding genetic program of brain development is modified by a simultaneous 

process of environmental specialization, which tailors the development to the unique experiences 

and environment of that individual. This occurs largely via the developmental process of 

pruning, which fine-tunes the synapses that are overproduced in postnatal life (Huttenlocher et 

al., 1982). Similar to synaptogenesis, brain regions vary in the time point at which pruning 

occurs. This so-called “experience-dependent plasticity” generally occurs in a sequentially and 

hierarchically organized manner, with the maturation of lower level functions preceding that of 

higher order processes (Nithianantharajah and Hannan, 2006). Each functional process, and its 

underlying brain circuit, undergoes a temporally limited sensitive period of heightened plasticity 

during which neural development is especially receptive to particular types of events. These so-

called “sensitive periods” are considered evolutionarily advantageous because they 1) optimize 

each individual for their environment, and 2) allow for the brain to capitalize on widely available 

signals from the environment to scaffold development rather than relying on genetic signals 

alone (Bick and Nelson, 2016).  

 Much of what we know about sensitive periods comes from the work of Hubel and 

Weisel in the visual system (Hubel and Wiesel, 2004). These investigators found that binocular 

visual experience during early postnatal life is critical for the development of normal vision. In 

their experiments, they obstructed visual input to one eye very early in life in nonhuman animals. 

They found that visual input restored to that eye following the closure of the sensitive period 

failed to normalize vision. This effect was mediated via altered organization of primary visual 

cortex such that neurons linked to the obstructed eye were ceded to neurons encoding 
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information from the other eye (that received inputs).  Repeating the experiment in older animals 

failed to show these neural and functional changes, providing evidence of a visual sensitive 

period. Initially, this phenomenon was conceptualized as a “critical period” rather than a 

“sensitive period” because the neural connections and functions become irreversible after the 

period closes. However, emerging research is beginning to uncover mechanisms through which 

plasticity can be reinstated after the closure of a sensitive period (Nabel and Morishita, 2013). 

This has exciting implications for mediation of aberrant developmental processes.  

 Although our understanding of sensitive periods stems primarily from research in sensory 

and motor systems, there is evidence for sensitive periods in affective development. Unlike 

sensory and motor systems, which develop early in life, structural and functional changes within 

affective neural circuits occur across the first two decades of life. Sensitive periods for affective 

development are perhaps most well understood during the very early postnatal period (Hartley 

and Lee, 2015). Work by Regina Sullivan and colleagues on amygdala fear circuitry found that 

prior to postnatal day 10, infant rats exhibit a paradoxical approach response to an odor 

previously paired with a shock. This coincides with a sensitive period for attachment learning 

wherein suppression of fear responding during this period may functionally promote attachment 

between the infant and the caregiver. Attachment therefore occurs with the caregiver, even if the 

quality of the care received is poor (see review by Rincon-Cortes and Sullivan, 2014). This 

pattern mirrors what is seen in humans: children who are abused very early in life often have 

strong attachment with their abusive parents (Sullivan and Lasley, 2010). After prenatal day 10 

in rats, odor-shock conditioning produces an aversion, reflecting the emergence of cued fear 

learning. This coincides with the onset of learning-induced plasticity in the amygdala and the 

closure of the attachment sensitive period.  



www.manaraa.com

9 

 

 After postnatal day 10, the rat mother’s presence can buffer the fear response. This 

suggests that caregivers play a critical role in regulating children’s behavior, physiology, and 

stress reactivity, even after the closure of a sensitive period. Importantly, lack of a caregiver 

presence appears to cue the termination of the sensitive period for environmental input into 

emotion network development (Moriceau et al., 2009), resulting in early transition from 

approach to avoidance behavior following odor-shock conditioning (see review by Callaghan 

and Tottenham, 2016). These results suggest that abnormal environmental input during a 

sensitive period (in this case, lack of species-expected caregiver attachment) can lead to an 

altered developmental course, which is postulated to have negative consequences later in life 

(Tottenham, 2014).  

 There is ample evidence to suggest that lack of caregiver attachment in humans during 

early postnatal life can have devastating consequences. A well-studied example of this is 

institutional rearing of children. Orphanage-reared youth are at elevated risk for a range of 

negative cognitive and emotional problems, including anxiety and depression (see review by 

Tottenham, 2012). Research shows persistent changes in emotion processing and associated 

neurocircuitry, which may underlie the link between early experience and later affective 

dysfunction. For example, orphanage-reared youth show emotion regulation difficulties and 

heightened attentional biases to emotion materials (Tottenham et al., 2010). Neuroimaging 

studies in orphanage-reared youth show larger amygdala volume (Mehta et al., 2009, Tottenham 

et al., 2010, although see Sheridan et al., 2012) and altered functional connectivity (while 

viewing emotional face stimuli) between amygdala and mPFC (Gee et al., 2013a) - a pathway 

critical for emotion regulation (Kim and Whalen, 2009). Consistent with the idea of a sensitive 

period, these alterations persist years after the adversity ended. Indeed, many children in these 
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studies were adopted into families of very high socioeconomic status, most prior to age 5. In 

addition to the lack of a stable caregiver, the deprived environment of an institution does not 

provide adequate experience to scaffold normal brain development. This may be further 

damaging to affective development, as well as cognitive, social, sensory, and motor functioning 

(McLaughlin et al., 2014).  

 Together, it is clear that both genetic and environmental factors play a role in shaping 

early emotion systems. It is important to understand these factors in children and adolescents 

(youth), so that early indicators of premorbid risk can be identified and potentially mediated. It is 

likely easier to intervene during early sensitive periods, when brain systems are more malleable, 

than later on, when sensitive periods have closed. Closure of a sensitive period may be solidified, 

in part, by myelination - the final stage of brain development. Myelination occurs linearly across 

the first two decades of life, and then continues more slowly into middle adulthood (Westlye et 

al., 2010), acting as a brake on plasticity that results in circuit stabilization (McGee et al., 2005). 

The protracted developmental timecourse of affective systems through adolescence (Gee et al., 

2013b, Gabard-Durnam et al., 2014) suggests that they have an extended period of sensitivity. 

This may render them more susceptible to environmental or genetic insults, but also more 

mutable to early remediation - a notion supported by recent data (see Bick and Nelson, 2016 for 

a review).	

 Importantly, neither genes nor environment alone are sufficient to predict the 

development of psychopathology. As we saw, maturity comes about via complex interactions 

between genetic and environmental factors over time. Thus, research on the gene-environment 

(GxE) interplay is increasingly emphasized for understanding both typical and atypical 

emotional development. In Chapter 2 and in some of our prior work (Marusak et al., 2015b), we 
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begin to address this by testing for a GxE effect in predicting structure and function of emotion 

processing neurocircuitry in youth.   

1.4 Childhood trauma          

 As we saw in the preceding section, adverse early experiences can dramatically alter a 

child’s emotional development. It is not surprising then, that exposure to childhood trauma (e.g., 

abuse, violence, neglect) is one of the most potent risk factors for an array of emotional 

disorders, including depression, anxiety, and posttraumatic stress disorder (PTSD; Kessler et al., 

2010). This risk has been shown to persist even decades later into adulthood, accounting for an 

estimated 45% of child-onset and 32% of adult-onset disorders (Green et al., 2010). These 

findings underscore the relevance of childhood trauma for lifelong health and wellbeing. 

Exposure to childhood trauma is also linked to more severe forms of disease, including poorer 

treatment response, increased chronicity of symptoms, and heightened suicidality (Dube et al., 

2001, Tunnard et al., 2014). Together, these data point to a strong and pervasive link between 

exposure to childhood trauma and poor mental health outcomes.  

 Epidemiological studies indicate that a majority of US children have been exposed to 

trauma by the time they reach adolescence (McLaughlin et al., 2012). Exposure to violence, 

crime, and/or abuse is particularly common, with rates exceeding 70% (Finkelhor et al., 2013). 

The alarmingly high rates of exposure and the link between childhood trauma and onset and 

persistence of psychopathology emphasize the need for early remediation strategies capable of 

circumventing the development of psychopathology. However, current therapies for emotional 

psychopathologies are derived from those developed for adults, despite the fact that emotion 

circuitry is qualitatively different in youth than in adults (Gee et al., 2013b, Gabard-Durnam et 
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al., 2014). Increased understanding of the neurobehavioral consequences of childhood trauma in 

young people is badly needed to develop empirically based, early interventions.  

1.5 The functional connectome          

 Recognition that the genetic architecture of emotional behavior/psychopathology is 

complex and influenced by smaller contributions of myriad genes has prompted the investigation 

of biological processes that are intermediate to genes and behavioral phenotypes. Neuroimaging 

phenotypes of brain circuitry are lauded for their value in serving as so-called ‘intermediate 

phenotypes’, which may be more proximal to gene function and thus more accessible targets for 

molecular and genetic research (Meyer-Lindenberg and Weinberger, 2006, Bogdan et al., 2013). 

Neural circuits are also more suitable targets for clinical research because they are presumably 

more specific and quantifiable than diagnostic phenotypes, which are highly comorbid and 

heterogeneous, and thus likely collapse across several processes and circuits. For instance, under 

current classification systems (American Psychiatric Association, 2000, 2013), it is possible for 

two individuals to be diagnosed with major depression while possessing only one common 

symptom. Thus, in this dissertation we test the impact of childhood trauma on emotion 

processing neurocircuitry in youth.  

 Advances in neuroimaging methods, particularly functional (fMRI) and structural 

magnetic resonance imaging (sMRI), over the past few decades have catalyzed our 

understanding of affective functioning and disorders. The prevailing approach was to find 

specific brain region(s) linked to specific types of conditions. However, this approach has run 

into significant challenges; as discussed above, there are numerous distributed brain regions 

involved in the processing and regulation of emotions (Fusar-Poli et al., 2009). In addition, as is 

the case with most forms of psychopathology, neural changes in anxiety and affective disorders 
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are not localized to a specific brain region (Etkin and Wager, 2007). Although differences in 

affective disorders are most commonly observed in core emotion processing brain regions (e.g., 

amygdala, insula, ACC), there are also differences in interconnected regions and circuits (e.g., 

dorsolateral prefrontal cortex [DLPFC]).  

 In response to these distributed patterns, there has been increased emphasis on 

understanding circuit-level, and even whole brain, functional organization	 (Sporns, 2011). 

Recent advances in characterizing the “functional connectome” are due, in part, to enhanced 

understanding of intrinsic human brain organization. Research shows that the human brain is 

intrinsically organized into distinct functional networks that are involved in an array of 

emotional, cognitive, and sensory processes (Fox et al., 2005). These networks are observed even 

‘at rest’, i.e., in the absence of a specific task, and are thought to engender and constrain brain 

function across an array of neuropsychological contexts. There is evidence that disruptions in 

specific networks contribute to specific patterns of cognitive and behavioral impairments. As 

such, dysconnectivity models have taken center stage in explanations of the etiology of 

emotional disorders and other types of psychopathologies (Greicius, 2008).   

 In this dissertation, we will evaluate function in localized brain regions, and begin to 

address how these changes relate to functional interactions within and between networks.  

1.6 Current research: focus, sample, and methodological approach    

 The goal of this work is to identify neurobehavioral correlates of childhood trauma in 

youth. We focus on functional neural responses and connectivity - and to a lesser extent, 

structural variation - within emotion processing neurocircuitry. We will evaluate how emotional 

materials are processed and regulated in the brain, and also the intrinsic organization of emotion 
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processing circuitry at rest, when the individual is not actively engaging in emotion processing. 

Four inter-related studies are described, in Chapters 2-5.  

 Participants in this research program were recruited during the transitional developmental 

window of late childhood/early adolescence (ages 7-15), which marks the beginning of a period 

of heightened risk for the development of emotional psychopathology (Angold et al., 1998). This 

approach allows assessment of neurobehavioral markers prior to the emergence of a disorder but 

within a relatively narrow age range.  

 Youth participants were drawn from an urban Detroit minority community 

disproportionately burdened by trauma (Gillespie et al., 2009) and associated psychopathology 

(Lowe et al., 2014). Despite this increased apparent risk, minorities are underrepresented in 

clinical and neuroscientific research (Falk et al., 2013) – which has led to calls by the National 

Institutes of Health for greater representation of minorities in research (Brawley and Freeman, 

1999). Childhood trauma was defined here as experiences of abuse (emotional, physical, sexual), 

violence (community, domestic) and neglect, given that these types of exposures are common 

and frequently co-occur (Green et al., 2010). The sociodemographic makeup and types of 

experiences of this population of urban youth is qualitatively different from the studies reviewed 

in Section 1.3 above, which focus on orphanage-reared youth adopted into higher socioeconomic 

status families. The studies described in each Chapter draw participants from the same 

overlapping sample of at-risk (i.e., lower income, minority, urban) youth. Subsamples were 

chosen for each Chapter based on the study aims (e.g., to match trauma and comparison groups) 

and available data (e.g., fMRI, salivary DNA). Study participants were run through one or two 

task-fMRI protocols: one consisted of an emotional face-matching task, the other, of stroop-like 

emotional face-categorization tasks. These tasks are described in detail, in ensuing Chapters.   
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 The main approaches we have chosen for this research are blood-oxygen level dependent 

(BOLD) fMRI and functional connectivity MRI (fcMRI). fMRI uses experimental stimuli, e.g., 

emotional faces, to evoke neural response in brain region(s) of interest, e.g., amygdala, insula, 

ACC. The outcome measure is magnitude of response within localized brain regions. Because 

responses are quarried across the entire brain, activity in other areas can also be tested in 

exploratory or post hoc analyses.  

 In contrast to fMRI, fcMRI measures the correlation in activity/signal between different 

brain regions or networks. Functional connectivity (FC) reflects the underlying structural 

connectivity architecture of the brain, indicating the presence of direct and/or indirect 

(polysynaptic) connections (Greicius et al., 2009, van den Heuvel et al., 2009). FC can be 

measured in the context of an experimental paradigm, for instance an emotion processing task, or 

during rest (i.e., in the absence of an experimental paradigm). In a resting-state paradigm, 

individuals are told to lay awake in the scanner, and in our case, with their eyes closed. FC 

correlations and networks derived during the resting-state are reliable, reproducible, and linked 

to individual differences in temperament, behavior, and cognition (Shehzad et al., 2009, 

Thomason et al., 2011, Stevens and Spreng, 2014, Choe et al., 2015). With a single scan (6 min 

here), researchers have access to FC within a circuit of interest (e.g., FC between amygdala and 

mPFC/ACC) as well as patterns of whole-brain integration (i.e., within- and between-network 

FC).  

 High-resolution anatomical images are also acquired during each MRI scan session. 

Measures derived from sMRI include regional gray matter volume, shape analysis, and cortical 

thickness. In Chapter 2, we evaluate gray matter volume of the amygdala; however, multiple 

areas can be tested simultaneously, as done in our prior work (Marusak et al., 2015b). 
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 In addition to neuroimaging measures, we test for effects of trauma on behavioral 

performance during emotion processing and regulation tasks. Presence or absence of behavioral 

effects informs the interpretation of neurological effects. For instance, concurrent change in brain 

and behavioral function might reflect a dysfunctional neurobehavioral process. This 

interpretation is strengthened if there is a brain-behavior correlation. Neural changes in the 

absence of behavioral effects, in contrast, may imply a compensatory neural mechanism (often 

increased neural response or FC) or a latent neural risk factor (often reduced neural response or 

FC). We evaluate these possibilities in our analyses.   

 Next, it is important to evaluate whether observed neurobehavioral changes could serve 

as markers of emotional psychopathology. Thus, we test for associations between 

neurobehavioral measures and symptoms of emotional psychopathology. As previously 

mentioned, emotional disorders are highly heterogeneous and consist of a range of symptoms. In 

recognition of this heterogeneity, there is increased emphasis on examining more fundamental 

underlying biological and psychological substrates. These may be observed across several 

disorders, thus underlying some of the phenotypic manifestations and genetic and environmental 

contributions shared across disorders. The National Institute of Mental Health’s Research 

Domain Criteria (RDoC) initiative emphasizes a similar evaluation of cross-cutting mechanisms 

of disease (Sanislow et al., 2010, Cuthbert and Insel, 2013). 

 Analysis of the factors underlying mood and motivation more generally has consistently 

shown two distinct dimensions of affective experience: reward sensitivity (RS; other terms 

include behavioral activation and positive affectivity) and negativity affectivity (NA; or 

avoidance; Watson and Tellegen, 1985). Low RS refers to reduced motivation to seek rewards, 

and/or diminished positive affect in anticipation of and during receipt of rewards (Forbes and 
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Dahl, 2005, Forbes et al., 2009). NA is defined as the tendency to experience negative emotions, 

e.g., distress, fear, anxiety (Watson et al., 1985, Hasler et al., 2004). Research shows that these 

dimensions transcend diagnostic boundaries, with high levels of NA observed across both mood 

and anxiety disorders (Watson et al., 1988). This pattern may reflect the high comorbidity and 

genetic heritability of these conditions. Reduced RS, in contrast, is more specific to the mood 

disorders (and also PTSD; Glowinski et al., 2003, Kashdan et al., 2006) and is considered one of 

the most promising intermediate phenotypes of mood disorders (Hasler et al., 2004, Bogdan et 

al., 2013).  

 High NA and low RS are considered critical vulnerability factors in the development of 

emotional psychopathology, particularly during early formative years (Forbes and Dahl, 2005). 

NA and RS self-reported dispositions vary on a continuum of severity, even in psychiatrically 

healthy populations (Watson et al., 1995). As such, evaluating NA and RS dimensions as they 

relate to trauma-related neurobehavioral changes should improve our ability to identify specific 

biomarkers of risk. This approach may also inform the development of targeted interventions, as 

symptoms related to NA and RS respond to different types of treatments and may thus represent 

distinct etiopathologic mechanisms (Nutt et al., 2007).  
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CHAPTER 2: AMYGDALA RESPONSE TO SOCIAL CUES SHIFT WITH OXYTOCIN 
RECEPTOR GENOTYPE AND EARLY STRESS IN YOUTH 

 
2.1 Introduction 

In addition to its well-known role in promoting pro-social behavior, the neuropeptide 

oxytocin is increasingly recognized for its ability to attenuate anxiety and stress reactivity. 

Oxytocin administration reduces self-reported anxiety (Bartz and Hollander, 2006) and levels of 

cortisol (Heinrichs et al., 2003), the hormonal end product of the hypothalamic-pituitary-adrenal 

(HPA) axis. Thus, there is a growing interest in understanding the role of oxytocin in stress-

related clinical disorders, such as anxiety, depression, and PTSD.  

Variation in the oxytocin system may be an important factor in predicting risk for the 

development of psychiatric disorders, particularly in the context of early adversity. For example, 

children and adolescents exposed to early life stress (ELS), one of the most significant predictors 

of psychiatric illness (Green et al., 2010), exhibit lower levels of peripheral oxytocin following 

physical contact with their mothers (Wismer Fries et al., 2005). Further, a common variant in the 

oxytocin receptor gene (OXTR; rs2254298) has been found to interact with ELS to predict 

symptoms of anxiety and depression in young participants (Thompson et al., 2011). Given that 

sensitivity of the oxytocin system appears to be set in early life (Meinlschmidt and Heim, 2007), 

there is a critical need to better understand the role of oxytocin in mediating psychiatric risk 

during childhood and adolescence, when stress-related clinical disorders frequently emerge.  

In the brain, oxytocin has marked inhibitory effects on the amygdala (Bale et al., 2001; in 

adult males), a corticolimbic region that plays a critical role in biasing information processing by 

orienting attention to salient, emotionally-laden, and biologically-relevant stimuli in the 

environment (LeDoux, 1998). The amygdala is also posited to govern the processing of 

potentially-relevant but ambiguous information in the environment, such as faces lacking 
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interpretable emotional content (Wright and Liu, 2006). Higher amygdala response to ambiguous 

faces is thought to reflect a greater tendency to perceive these cues as threatening (Forbes et al., 

2011), and heightened amygdala responses to ambiguous faces are reported in individuals with 

anxiety (Cooney et al., 2006) and in youth at risk for depression (Dearing and Gotlib, 2009). 

These findings suggest that altered sensitivity of the amygdala to socially-relevant cues might 

contribute to the pathophysiology of these conditions (LeDoux, 1998).  

Neuroimaging studies report that intranasal oxytocin administration dampens amygdala 

reactivity and reduces connectivity between the amygdala and brainstem regions implicated in 

autonomic and behavioral manifestations of fear (Kirsch et al., 2005; in adult males but not 

females, Domes et al., 2007). Thus, it is possible that individual variation in the oxytocin system 

may impact amygdala sensitivity, which may, in turn, alter the way information in the 

environment is processed. Consistent with this notion, adult (Inoue et al., 2010) and adolescent 

(Furman et al., 2011) carriers of the rs2254298 OXTR A-allele variant are reported to have 

increased amygdala volume, a neural marker thought to confer elevated emotional reactivity and 

anxiety (Holmes et al., 2012). These findings highlight the amygdala as an important neural 

substrate for OXTR-mediated risk for emotional psychopathology. However, it is unknown 

whether there is an association between oxytocin and amygdala function in early life. It is 

possible that increased sensitivity of the amygdala in childhood may contribute to larger 

amygdala volumes observed in individuals carrying the rs2254298 OXTR A-allele.      

The present study tests the effects of the OXTR polymorphism rs2254298 on amygdala 

volume and functional responses in youth. We evaluated amygdala function using two tasks that 

involve processing socially-relevant face stimuli to examine the generalizability of effects across 

tasks. Amygdala responses to social ambiguity and during conditions of varying cognitive load 
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were evaluated. We predicted that A-allele carriers would show heightened amygdala responses 

to ambiguous social cues and a lower ability to dampen amygdala responses during higher 

cognitive load. We also predicted that A-allele carriers would show increased amygdala volume, 

as observed in prior work.  

Current theory suggests that A-allele carriers may be more sensitive to environmental 

exposures and thus more vulnerable to the harmful effects of ELS (Brune, 2012). Emerging 

empirical data in youth support this notion, showing greater increases in anxiety and depressive 

symptoms in OXTR rs2254298 A-alleles than in youth with a G/G genotype following exposure 

to ELS (Thompson et al., 2011). Given research showing that ELS is associated with enhanced 

amygdala reactivity (McCrory et al., 2011; see also Chapter 4), we evaluated the hypothesis that 

young A-allele carriers are more sensitive to the effects of ELS on amygdala function. Here, we 

investigate interactive effect of ELS and OXTR genotype on amygdala activity. We do so in a 

sample of high-risk (i.e., urban, low-income, minority) youth with a high prevalence of ELS. 

This demographic was selected for several reasons. First, prior research shows not only that 

trauma frequency is more extreme in African Americans living in impoverished urban areas, but 

also that the negative consequences of trauma may be more severe (Alim et al., 2006). For 

instance, African American urban residents who experience trauma are nearly two times more 

likely to develop PTSD than their lower risk counterparts (Goldmann et al., 2011). Second, lower 

income is a significant predictor of more severe emotional psychopathology following trauma 

(Lowe et al., 2014). Thus, the present sample is considered high-risk due to additive effects of 

trauma frequency and stress burden.  

2.2 Methods 

 2.2.1 Participants 
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The present study reports on 55 children and adolescents, ages 7-15, recruited through 

classified advertisements posted on Craigslist (Metro Detroit), printed flyers, Wayne State 

University (WSU) community postings, and area pediatric mental health clinics/service 

providers. Although 61 participants were initially included, 6 were excluded due to image 

artifacts that prohibited analysis of gray matter volume (GMV), as described below. Study 

exclusion criteria included history of neurological injury, significant learning disorder, English 

as a second language, or presence of magnetic resonance imaging (MRI) contraindications. Prior 

to the scan session, participants and parents were shown a brief video to prepare them for their 

MRI scan (available at: www.brainnexus.com/links). Full-Scale IQ was determined using the 

Kaufman Brief Intelligence Test, Second Edition (Kaufman and Kaufman, 2004b). Written 

informed consent and child/adolescent assent were obtained for all participants and their parents 

as approved by the WSU Institutional Review Board. 

 2.2.2 Early Life Stress and Internalizing Symptomology 

ELS was measured using the 24-item Traumatic Events Screening Inventory (TESI; 

Ippen et al., 2002), a parent report of potential stressors experienced by the child (e.g., assault, 

witnessing violence, family member arrested). Number of early life stressors was calculated by 

summing the positively endorsed items on the TESI.  Anxiety and depressive symptoms were 

assessed using the 41-item Screen for Child Anxiety Related Emotional Disorders (SCR; 

Birmaher et al., 1997) and the 10-item Children’s Depression Inventory (CDI; Kovacs, 1992), 

respectively. A visual analog scale (VAS) was used to obtain an average rating of fear/anxiety 

during the MRI visit (repeat measures at 30-minute intervals) as previously described (Thomason 

et al., 2013).  

 2.2.3 Pubertal Development  



www.manaraa.com

22 

 

Pubertal development was assessed with the self-report Tanner stages questionnaire 

(Marshall and Tanner, 1968). Following prior work (Forbes et al., 2011), participants were 

categorized as pre/early (Tanner stages 1-2) or mid/late (stages 3-5) pubertal. 

 2.2.4 OXTR Polymorphism Genotyping 

Genetic analyses were carried out at the WSU Applied Genomics Technology Center. 

DNA was isolated from saliva collected in Oragene DNA collection tubes using EZ1 Advanced 

(Qiagen) with standard conditions. The OXTR polymorphism rs2254298 was investigated using a 

5’-nuclease assay (Life Technologies TaqMan assay X). Assays were run in a 5 microliter 

reaction under standard TaqMan conditions on a QuantStudio 12K Flex (Life Technologies). 

Data were analyzed using TaqMan Genotyper software (version 1.3; Life Technologies).  

Of the 55 total participants, 34 were carrying two G alleles (G/G homozygotes), 17 were 

carrying one A and one G allele (A/G), and 4 were carrying two A-alleles (A/A).  Individuals 

heterozygous and homozygous for the A-allele were combined into an ‘A-allele carrier’ group (n 

= 21). Genetic distribution across the sample was in Hardy-Weinberg equilibrium, χ² = 1.163, p 

= 0.56 (www.ncbi.nlm.nih.gov/snp). Power analysis based on results of a prior study of OXTR 

and amygdala GMV in youth (Furman et al., 2011) suggested that power for the current sample 

was 0.78.  

 2.2.5 MRI Data Acquisition 

 MRI data were acquired with a Siemens 3.0 Tesla MRI scanner (MAGNETOM Verio 

system, Siemens Medical Solutions) equipped with a 12-channel head coil (WSU School of 

Medicine MR Research Facility). fMRI data were acquired across the whole brain using a T2*-

weighted echo-planar imaging (EPI) sequence with the following parameters: TR: 2000 ms, TE: 

25 ms, 29 axial slices, field of view: 220 x 220 (whole brain coverage), flip angle: 90°, voxel 
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size: 3.44 x 3.44 x 4 mm. High-resolution anatomical images were acquired using a three-

dimensional T1 magnetization-prepared rapid gradient-echo (MP-RAGE) sequence with the 

following parameters: TR: 1680 ms, TE: 3.51 ms, 176 axial slices, field of view: 256 x 256 

(whole brain coverage), flip angle: 9°, voxel size: 0.7 × 0.7 × 1.3 mm.   

 2.2.6 Structural Image Processing 

Prior to analysis, T1-weighted anatomical images were screened for motion artifacts 

(ghosting, blurring). Individual participant whole-brain intracranial masks were generated and 

manually corrected for N = 61 anatomical images by a trained rater (N.K.) using the interactive 

editing tools in the BrainSuite software package (v.13a4; Shattuck and Leahy, 2002; 

http://brainsuite.org/). Intrarater reliability was tested by generating whole-brain intracranial 

masks twice for five brains, at least two weeks apart. Intraclass correlation coefficient (ICC) was 

computed using the total number of voxels in each brain mask; reliability was confirmed by ICC 

> 0.9. Whole-brain masks and MR image volumes were then processed using BrainSuite to 

produce participant-specific segmentation of brain areas and derive total GMV of regions of 

interest (ROIs) in left and right hemispheres (see Marusak et al., 2015b for description of 

processing steps). The amygdala was selected as an a priori ROI. Prior work (Joshi et al., 2007, 

Joshi et al., 2009) shows that segmentation of subcortical brain structures, as performed by 

BrainSuite software, is highly congruent with manually segmented images drawn by experts at 

Massachusetts General Hospital (Dice coefficients κ= 0.6474-0.8918). Validation of subcortical 

segmentation in the latest version of BrainSuite is forthcoming. To ensure the accuracy of 

segmentation results for the current study, segmented image volumes from the automated 

method were manually inspected by two trained raters (N.K. and H.M.). Data from participants 
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showing poor quality segmentation for ROIs were excluded from corresponding analyses, as 

detailed below.  

 2.2.7 Gray Matter Volume Analyses 

Total GMV of left and right amygdala ROIs was computed using BrainSuite software. 

Outliers that were two standard deviations above or below the mean were removed from 

analyses. This resulted in the removal of 1 or 2 cases per ROI. Additionally, GMV values were 

excluded for 3 cases per ROI due to poor quality subcortical segmentation. Upon completion of 

these quality assurance steps, N = 51 and 50 cases remained for structural analyses of each ROI.  

Results are reported for quality-assured data, and were further confirmed with the full N = 55 

sample by winsorizing outliers to 2 standard deviations above or below the mean and applying 

whole-sample mean replacement for missing GMV values, as there was no evidence of 

systematic differences in those with missing values. The primary analysis was a 2x2 ANCOVA 

for amygdala GMV with gene group as the between-subjects factor (A-alleles carriers, G/G 

homozygotes) and hemisphere (left, right) as the within-subjects factor. Following prior pediatric 

studies (Mosconi et al., 2009), age, IQ, sex, and whole brain volume were entered as nuisance 

covariates. IQ has been shown to correlate with amygdala volume specifically (Rice et al., 2014) 

and medial temporal volume more generally (Andreasen et al., 1993, Narr et al., 2007, Amat et 

al., 2008). Trend-level associations were observed between right amygdala GMV and age (r(50) 

= 0.27, p = 0.062) and IQ (r(41) = -0.31, p = 0.051). Whole brain volume was not significantly 

associated with total amygdala volume, r(49) = 0.004, p = 0.98. Because OXTR effects 

previously reported were bilateral (Furman et al., 2011), we did not have a priori lateralization 

hypotheses. OXTR-by-sex and OXTR-by-age interactions were also examined. Few studies to 

date have evaluated oxytocin genes in African American samples, bringing this understudied 
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group into the wider context. Results in African American participants alone, and in follow-up 

analyses covarying for race, were consistent with those reported in the full sample. 

 2.2.8 fMRI Paradigms 

Participants were run through one or two neuroimaging protocols. The same structural 

MP-RAGE scan was used in both protocols, but they included different fMRI tasks. The tasks 

involved viewing socially relevant stimuli (faces) and are widely used to probe amygdala 

sensitivity: (1) a Stroop-like face-categorization task (N = 29; Egner et al., 2008), and (2) a face-

matching task (N = 35; Hariri et al., 2002b).  

2.2.8.1 Face-Categorization Stroop Task: The Stroop task enabled us to examine the 

impact of high vs. low cognitive demand in the context of high arousal emotional faces. During 

the task (Figure 1A), participants were instructed to identify the gender of the face stimuli with a 

button press response, while ignoring the task-irrelevant gender word label. Face stimuli 

consisted of either happy or fearful expressions. Neurobehavioral responses during trials where 

the word label was incongruent with the face gender were compared with trials where the word 

label and gender were congruent. This contrast enabled us to permute cognitive demand. Prior 

evidence from similar Stroop (McKenna, 1986) and emotion dot probe (Armony and Dolan, 

2002) studies show that stimuli with emotional valence require more attentional resources than 

do neutral stimuli.  
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Figure 1. Experimental paradigms used to examine amygdala responses to social cues. (A) 
Face-categorization Stroop experimental task. Participants were instructed to indicate the gender 
of the face, while ignoring the overlying gender distracter word. Face stimuli included fearful 
and happy expressions. Trials varied such that word stimuli were either congruent or incongruent 
wiath the gender of the face. This enabled us to evaluate amygdala response while varying 
cognitive demand. (B) Face-matching task. Participants were instructed to indicate which of the 
two faces on the bottom of the screen matched the target face at the top of the screen. Trials were 
presented in emotion blocks (neutral, fearful, angry, and happy). Primary analyses focused on 
neutral facial expressions, given prior research showing that ambiguous faces engage variable 
amygdala response in youth. Gene effects on other facial expressions were also examined. 
 

2.2.8.2 Face-Matching Task: The second task involved matching neutral faces (Figure 

1B).  A number of studies have shown that neutral faces are not processed as emotionally 

neutral, especially as perceived by youth. In fact, a still face with direct eye contact is currently 

the favored approach for evoking the stress response in infants (Mesman et al., 2009). Indeed, 

neutral faces elicit threat-related brain responses in youth (Thomas et al., 2001, Forbes et al., 

2011). Amygdala response to neutral faces (particularly of adults) in children is comparable to 

activity elicited by negatively valenced faces in adults (Thomas et al., 2001, Lobaugh et al., 

2006, Marusak et al., 2013). This observation may be due to greater perception of threat and/or 

increased ambiguity of neutral faces in children, as threat and ambiguity are both known to 

engage the amygdala (LeDoux, 1998). Thus, for children, neutral faces are less commonly used 

as baseline stimuli. Increasingly, abstract neutral stimuli, such as shapes, are providing more 
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appropriate baseline (Herba and Phillips, 2004). Here, we focused on neutral faces for their 

ability to elicit variable amygdala response in youth, which may reveal individual differences in 

negativity biases. Elliptical shapes served as the baseline sensorimotor condition. Neutral face 

stimuli from the most widely used Ekman face stimuli set (Ekman and Friesen, 1976) are 

provided in Figure S1 (see online data supplement). See (Marusak et al., 2013) for summary of 

face stimuli used in neuroimaging research. Effects of OXTR on processing non-neutral (fearful, 

happy, and angry expressions) were examined in follow-up analyses, given that oxytocin 

administration studies in adults have not consistently shown selective effects for neutral faces.  

 2.2.9 Functional Image Processing and Motion 

During acquisition, head movements were corrected online using Siemens MRI motion 

correction (MoCo) software, which compares successively acquired volumes and prospectively 

adjusts subsequent slice acquisitions. MoCo also retrospectively corrects the time series for 

motion that occurred before the online correction is applied. All fMRI data reported here utilized 

the MoCo-corrected timeseries, and both tasks were processed using the same procedures unless 

otherwise noted. Data were processed with the SPM8 software package (Statistical Parametric 

Mapping; www.fil.ion.ucl.ac.uk/spm) implemented in MATLAB (Mathworks, Inc., Natick, 

Mass.). The first 4 EPI volumes were discarded to allow for system stabilization. Images were 

realigned to correct for motion, and the 6 motion parameters were included in participant-level 

models as regressors of no interest. Participants with movement exceeding 3.15 mm or 3 degrees 

in any direction were excluded from respective analyses (n = 9 participants total). This resulted 

in a final sample of 29 participants for the face-categorization task (G/G, n = 17; A-alleles, n = 

12), and 35 for the face-matching task (G/G, n = 23; A-alleles, n = 12). 20 participants provided 

data from both tasks. For remaining participants, average movement and root-mean-square 
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(RMS) head position change was computed across translational (x, y, z) and rotational (roll, 

pitch, yaw) directions. Overall, movement was well within accepted standards (< 1.5 mm RMS; 

Fair et al., 2012). Movement parameters were compared between OXTR groups for each task 

using two-sample t-tests and a p ≤ 0.05 (two-tailed) significance level, and reported in Results.  

Images were slice-time corrected, spatially transformed to the Montreal Neurological 

Institute (MNI) coordinate system, and spatially smoothed with a Gaussian kernel (6 mm FWHM 

for the face-categorization task, 8 mm FWHM for face-matching task). Data were not resampled 

during normalization, thus retained the native resolution (3.44 x 3.44 x 4 mm). A 128-second 

temporal high-pass filter was applied, and temporal autocorrelation was estimated using a first-

order autoregressive model.  

Task stimuli were presented with EPrime software v.2.0 (Psychology Software Tools, 

Inc., Pittsburgh, PA) and displayed on a back-projection screen that was viewed by participants 

via a mirror attached to the head coil in the scanner. 

2.2.9.1 Face-Categorization Stroop Task: The Stroop task consisted of 163 presentations 

of happy or fearful facial expression photographs, overlaid with the word “FEMALE” or 

“MALE” to create categorically congruent and incongruent stimulus sets (see Figure 2A). 

Participants were instructed to identify the gender of the face stimuli with a button press 

response, while ignoring the task-irrelevant word. Stimuli were presented for 1 s, with a varying 

interstimulus interval of 2-4 s (mean = 3 s) in pseudorandom order, counterbalanced across trial 

types for expression, word, and gender. Task duration was 12:46. Reaction time (RT) was not 

available for one A-allele carrier. 

Participant-level models were created, as previously described (Marusak et al., 2015a). In 

brief, separate regressors for stimulus events were created for incongruent and congruent trials, 
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using 1 s boxcar functions convolved with a canonical hemodynamic response function. Error 

and post-error trials were modeled separately. Participant level contrasts isolated effects of 

conflict by contrasting incongruent - congruent trials. Average signal change was extracted for 

each participant from anatomically-defined left and right amygdala ROIs, using masks defined 

by FSL FIRST segmentation tool (Patenaude et al., 2011). A 2x2 ANOVA was used to test for 

OXTR effects on amygdala response to incongruent-congruent trials, with gene group as the 

between-subjects factor and hemisphere (left, right) as the within-subjects factor. Behavioral 

performance for incongruent vs. congruent trials was calculated and compared between groups 

using two-sample t-tests. Behavioral and neural effects were considered significant at p ≤ 0.05 

(two-tailed).  

2.2.9.2 Face-Matching Task: The face-matching task consisted of 8 emotion blocks with 

2 each of the following valence conditions: angry, fearful, happy, and neutral. Each block 

consisted of six 4 s trials, and lasted 42 s. During each trial, participants were presented with a 

trio of faces, and were instructed to identify which of the two faces on the bottom of the screen 

matched the identity of a target face on the top of the screen (Figure 2B). All stimuli in a given 

trial were of the same gender and face expression, and an equal number of trials depicted faces of 

each gender. Emotion blocks were interleaved with two sensorimotor control blocks during 

which participants matched the orientation of vertically- or horizontally- presented ellipses. The 

order of block presentation was counterbalanced across participants Task duration was 7:14. 

Behavioral responses for the neutral face condition were not recorded for one A-allele carrier. 

Participant-level models were created, as previously described (Marusak et al., 2013). In 

brief, emotion blocks (neutral, fearful, angry, and happy) and baseline blocks (shapes) were 

modeled using convolved boxcar functions (42 s blocks). Participant level contrasts focused on 
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blocks of neutral face-matching vs. shapes-matching. Average signal change was extracted from 

anatomically-defined left and right amygdala ROIs, as described above, and compared between 

OXTR groups using a group x hemisphere ANOVA. We also tested for OXTR effects on 

behavioral performance, and on amygdala responses to other face emotions (fear, angry, happy). 

Analyses were re-run excluding 2 participants with less than 60% overall task accuracy, yielding 

no significant changes to reported results.  

2.2.9.3 Localization of amygdala effects: The amygdala consists of functionally distinct 

nuclei that can be broadly divided into three main subdivisions: basolateral, centromedial, and 

superficial. We conducted follow-up exploratory analyses on voxel-wise data to test whether 

whole-amygdala functional effects could be localized to specific amygdala subdivision(s). 

Bilateral amygdala subdivision masks were generated from 3D probabilistic cytoarchitectonic 

maps (Amunts et al., 2005) and localization was evaluated by examining each subdivision mask 

for voxels surviving small-volume correction, at a family-wise error corrected threshold of 

pFWE = 0.05. 

2.2.9.4 Whole-brain effects: While primary analyses focused on group difference in 

amygdala response, we also report results of exploratory whole-brain voxel-wise analyses at a 

threshold of p < 0.005, cluster minimum = 10 voxels.  

 2.2.10 Relation to Early Stress Exposure 

 Given prior work showing elevated levels of anxiety and depression in OXTR A-allele 

carriers in the context of ELS (Thompson et al., 2011), we tested for interactive effects of ELS 

and OXTR on amygdala volume and reactivity. Correlation analyses were first used to test for 

relationships between ELS and amygdala volume/reactivity, using a p ≤ 0.05 threshold, adjusted 

for multiple comparisons (volume and 2 fMRI tasks: p ≤ 0.0167). For significant effects, 
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PROCESS software (v.2.11; www.processmacro.org/) implemented in IBM SPSS v.21 was then 

used to test if ELS moderates the relationship between OXTR genotype and amygdala 

volume/reactivity. 

2.3 Results 

 2.3.1 Participant Characteristics 

OXTR groups did not differ in age, IQ, sex, income, race, pubertal development, anxiety 

or depressive symptoms, or whole brain volume (Table 1). OXTR groups also did not differ in 

fear/anxiety (VAS) reported during the MRI visit, t(53) = 0.48, p = 0.63. Effects observed are 

thus not likely influenced by group differences in stress responsivity during MRI scanning 

(Thomason et al., 2013). ELS was highly prevalent across the sample, with 96% reporting 

witnessing family threats and 32% witnessing domestic violence. Similar rates were observed 

within the subset of fMRI participants (see Table S2). Number of early life stressors endorsed 

did not differ between OXTR groups (Table 1). Overall, 26 participants were pre/early pubertal 

(Tanner stages 1-2), and 29 were mid/late pubertal (Tanner stages 3-5), χ2(1) = 0.16, p  = 0.68. 

Males and females did not differ on pubertal maturation, though there was a trend for females to 

be more mature, χ2(1) = 2.92, p  = 0.076.  

Table 1. Demographic and Clinical Characteristics by OXTR Group. 
 

Variable OXTR G/G 
(n = 34) 

OXTR A-Alleles                
(n = 21) 

Group 
difference 

  Age, m (SD) 12.11 (2.42) 11.05 (2.59) ns 
  Sex (Females), n (%) 23 (67.65) 11 (52.38) ns 
  IQ, m (SD) 104.04 (12.33) 100.72 (16.1) ns 
Pubertal Development Group (Tanner Staging), n (%) 

 
 

Pre/Early Pubertal 14 (41.18) 12 (57.14) ns 

 
Mid/Late Pubertal 20 (58.82) 9 (42.86) 

  Ethnicity/Race, n (%) 
   

 
African American 12 (35.3) 11 (52.3) ns 

 
Caucasian 12 (35.3) 6 (28.6) 
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Mixed 5 (14.7) 2 (9.5) 

 
Hispanic 1 (2.9) 1 (4.8) 

 
Not reported 4 (11.8) 1 (4.8) 

  Annual Household Income, n (%) 
   

 
Less than $40,000 16 (47.1) 

 
14 (66.7) 

 

ns  
$40,000 - $60,000 9 (26.5) 2 (9.5) 

 
$60,000 - $80,000 3 (8.8) 2 (9.5) 

 
$80,000 - $100,000 2 (5.9) 0 

 
Over $100,000 3 (8.8) 3 (14.3) 

 
Not Reported 1 (2.9) 0 

  Whole Brain Volume (mm3), m (SD)  
1378701.18 
(140652.9) 

1364428.1 
(106421.75) ns 

  Number of Early Life Stressors (TESI), 
m (SD) 2.82 (2.02) 2.05 (1.1) ns 

  Anxiety Symptoms (SCR), m (SD) 16.32 (12.06) 14.95 (12.27) ns 
  Depressive Symptoms (CDI), m (SD) 2.94 (3.43) 1.81 (2.79) ns 
Group difference tested using t-tests (age, IQ, anxiety), chi-square tests (sex, race), or Mann-Whitney U  
tests (income). Abbreviations: mean, m; not significant, ns; Intelligence quotient, IQ; Screen for Child  
Anxiety Related Emotional Disorders, SCR; Children's Depression Inventory, CDI: Traumatic Events  
Screening Inventory, TESI.  

 

Demographics for the 29 participants in the face-categorization Stroop task and the 35 

participants in the face-matching task are provided in Table S1 (see the online data supplement1). 

For both fMRI tasks, OXTR groups did not differ in age, IQ, income, race, pubertal development, 

anxiety or depressive symptoms, whole-brain volume, or movement. There was a higher 

proportion of female participants in the G/G homozygote group than in the A-allele group for the 

face-categorization task, χ2(1) = 5.15, p  = 0.033. Follow-up analyses controlling for sex yielded 

no changes to results reported.  

 2.3.2 Amygdala Volume 

ANCOVA controlling for age, IQ, sex, and whole brain volume revealed a main effect of 

OXTR on amygdala volume, F(1, 44) = 4.15, p  = 0.048, ηp
2 = 0.086. As predicted, this effect 

																																																								
1http://www.sciencedirect.com.proxy.lib.wayne.edu/science/article/pii/S0028393215301913 
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was driven by higher GMV in A-alleles compared to G/G homozygotes (see Figure 2A). The 

main effect of hemisphere, main effect of sex, and hemisphere x OXTR interaction were not 

significant, ps > 0.2. The main effect of OXTR on amygdala GMV remained significant when all 

covariates except IQ were removed, F(1,37) = 5.32, p  = 0.027, and became F(1,46) = 3.85, p = 

0.056 when all except age were removed.  

 

 
Figure 2. OXTR A-alleles show increased amygdala gray matter volume (GMV) and 
response when viewing socially-relevant face cues. GMV values are adjusted for whole brain 
volume. Error bars represent standard error of the mean. Main effect of OXTR, ps < 0.05.  
 

 2.3.3 Amygdala Reactivity 

2.3.3.1 Face-Categorization Stroop Task: Consistent with previous work, reaction time 

(RT) across the sample was slower for incongruent (mean = 876.3 ms, SD = 232.17 ms) relative 

to congruent (mean = 842 ms, SD = 211.35 ms) trials, t(27) = 3.67, p = 0.001. Similarly, 

accuracy was lower for incongruent (mean = 84.67%, SD = 12.17%) than congruent (mean = 

88%, SD = 9.67%) trials, t(28) = 2.89, p = 0.007. OXTR groups did not differ in their degree of 

RT interference, t(26) = 0.9, p = 0.37. Compared to G/G homozygotes, A-alleles showed a 

greater reduction in accuracy for incongruent relative to congruent trials, t(27) = 2.33, p = 0.027 
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(see Table 2 for behavioral performance, by group). This behavioral impairment was 

accompanied by higher average signal in the amygdala in OXTR A-allele carriers during 

incongruent relative to congruent trials (Figure 2B), F(1, 27) = 7.01, p = 0.013. There was no 

main effect of hemisphere or hemisphere x OXTR interaction, Fs < 0.1, ps > 0.6. The pattern of 

increased amygdala response and impaired behavioral performance is consistent with greater 

interference by incongruent stimuli in A-allele carriers. Post hoc within-group hemisphere x 

trial-type (congruent, incongruent; beta weights) ANOVAs revealed a main effect of trial-type in 

G/G homozygotes, F(1,16) = 5.08, p  = 0.039, but not in A-allele carriers, F(1,11) = 2.49, p  = 

0.14. That is, amygdala activity was lower during incongruent relative to congruent trials in G/G 

homozygotes but not in A-allele carriers. This suggests that the observed higher amygdala 

response in A-allele carriers was driven by a lower ability to dampen amygdala response during 

incongruent trials. Evaluation of trial types separately (incongruent, congruent) showed no 

differences between groups (ps > 0.05). Magnitude of amygdala response was not correlated 

with any measure of accuracy or RT across participants, or within either gene group (all ps > 

0.05). 

Table 2. Performance for face-categorization and face-matching tasks, by OXTR group. 

Face-categorization conflict task OXTR G/G                        
(n = 17) 

OXTR A-Alleles                
(n = 12)1 p 

Accuracy (%), congruent trials, m (SD) 85.12 (9.9) 92 (8.1) ns 
Accuracy (%), incongruent trials, m (SD) 83.82 (11.3) 85.83 (13.74) ns 
RT (ms), congruent trials, m (SD) 831.87 (203.37) 857.69 (232.34) ns 
RT (ms), incongruent trials, m (SD) 873.04 (223.9) 881.34 (240.75) ns 

Face-matching conflict task OXTR G/G                        
(n = 23)2 

OXTR A-Alleles                
(n = 12)3 p 

Accuracy (%), task overall, m (SD) 95.15 (14.26) 93.82 (13.45) ns 
Accuracy (%), neutral face condition, m (SD) 94.36 (21.34) 97.58 (8.37) ns 
RT (ms), task overall, m (SD) 1114.31 (233.76) 1159.03 (216.22) ns 
RT (ms), neutral face condition m (SD) 1105.24 (314.19) 1171.13 (232.96) ns 
Abbreviations: reaction time, RT. 1RT data unrecorded for one A allele. 2Behavioral data not recorded for one  
G/G participant. 3Behavioral data not recorded during the neutral face condition for one A-allele participant. 
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2.3.3.2 Face-Matching Task: Neither accuracy nor RT differed between OXTR groups for 

neutral face-matching, matching other face valences (fearful, angry, happy), for the shapes-

matching condition, or for neutral vs. shapes (all ts < 1.3, all ps > 0.2; see Table 2 for behavioral 

performance by group). Neuroimaging data showed that amygdala response to neutral faces was 

higher in A-allele carriers than G/G homozygotes, F(1,33) = 4.14, p = 0.05 (Figure 2C). No main 

effect of hemisphere or hemisphere x OXTR interaction was observed, ps > 0.18. The effect of 

OXTR was not driven by group differences in amygdala activity during the baseline shapes 

condition (vs. implicit baseline), F(1, 33) = 0.14, p = 0.7. To test whether effects of OXTR 

genotype were specific to ambiguous faces, we conducted a 3-way (hemisphere x emotion x 

gene-group) ANOVA to examine amygdala responses to other face emotions, i.e., fearful, happy, 

and angry. No main effects or interactions were observed (ps > 0.2). Amygdala response was not 

correlated with accuracy or RT during the neutral face condition across the sample (accuracy: 

r(34) = -0.19, p  = 0.3; RT: r(34) = -0.15, p  = 0.43) or within either group (ps > 0.16). 

2.3.3.3 Localization of functional responses in the amygdala: Follow-up exploratory 

analyses on voxel-wise data evaluated whether group differences in whole-amygdala response 

could be localized to specific subregion(s). For the face-categorization conflict task, OXTR group 

differences were significant in basolateral amygdala, pFWE = 0.011, Zmax = 3.63, x = -30, y = -4, 

z = -34 (MNI). For the face-matching task, OXTR effects on neutral face-matching could not be 

unequivocally localized to a specific subregion, pFWEs 0.054-0.063.  

2.3.3.4 Whole-brain results: Results of exploratory whole-brain fMRI analyses are 

provided in Table S4 (see online data supplement). Briefly, A-allele carriers showed higher 

activation to conflict (incongruent-congruent trials) than G/G homozygotes in posterior insula, 

amygdala, hippocampus, midbrain, and brainstem. There were no regions in which activity to 



www.manaraa.com

36 

 

conflict was elevated in G/G homozygotes relative to A-alleles. For neutral face-matching, A-

alleles showed elevated response in amygdala, posterior insula, parahippocampal gyrus, middle 

temporal gyrus, and inferior frontal gyrus. G/G homozygotes had greater activity in striatum, 

superior temporal gyrus, and inferior parietal lobe.   

 2.3.4 Relation to Early Stress Exposure 

2.3.4.1 Amygdala volume: Neither left nor right amygdala volume was related to number 

of early stressors in either gene group or across the sample, rs < |0.15|, ps > 0.6.  

2.3.4.2 Amygdala reactivity: During the face-categorization task, we found a positive 

association between right amygdala response and number of early life stressors in A-allele 

carriers, r(11) = 0.705, p = 0.015 (Figure 3). The correlation remained significant if 

nonparametric tests were applied, rs(11) = 0.749, p = 0.008. The association between ELS and 

amygdala response was not significant for left amygdala, r(11) = 0.32, p = 0.34, or in G/G 

homozygotes (left: r(22)  = -0.08, p = 0.71; right: r(22) = 0.06, p = 0.79). Correlation between 

right amygdala response during the face-categorization task and ELS was significantly higher 

among A-allele carriers than among G/G homozygotes, Z = 1.94, p = 0.05. Moderation analyses 

confirmed that ELS moderates the relationship between OXTR genotype and right amygdala 

reactivity, ΔR2 = 0.36, ΔF(1,24) = 3.93, p =0.02, b  = 0.48, t(24) = 2.46, p = 0.02. ELS was not 

correlated with amygdala response to neutral faces across the sample (left: r(33)  = -0.13, p = 

0.47; right: r(33) = -0.25, p = 0.15) or in either gene group (ps > 0.4). 
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Figure 3. Relation between amygdala reactivity and early life stressors (ELS) present in 
OXTR A-allele carriers but not G/G homozygotes.   
 

2.4 Discussion 

 Emerging data suggest that genetic variation in OXTR modulates emotion processing and 

regulation, and thus likely plays a role in susceptibility to psychopathology. The present study 

demonstrates novel links among OXTR genotype, ELS exposure, and structure and function of 

the amygdala in early life. We report that amygdala GMV and responses to social cues shift with 

oxytocin receptor gene variant rs2254298 in a sample of high-risk children and adolescents. 

Specifically, compared to youth with the G/G genotype, youth carrying the A-allele showed 

increased volume and higher response of the amygdala across two tasks that required viewing 

socially-relevant face cues. Increased amygdala responses in A-allele carriers corresponded to 

poorer task performance during the face-categorization Stroop task. The link between OXTR 

genotype and amygdala reactivity was moderated by ELS exposure, such that the magnitude of 

amygdala response was associated with ELS in A-allele carriers but not G/G homozygotes. 

These findings provide empirical support for recent hypotheses that OXTR rs2254298 A-allele 

carriers are more susceptible to the deleterious effects of adverse environmental exposures 

compared to their G/G counterparts (Brune, 2012).  
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 Consistent with prior findings in adults (Inoue et al., 2010) and adolescents (Furman et 

al., 2011), we observed increased amygdala GMV in OXTR rs2254298 A-allele carriers. We 

augment these prior studies by demonstrating that amygdala function is also altered in youth 

carrying the A-allele. Given the amygdala’s critical role in detecting the salience, significance, 

ambiguity, and personal relevance of environmental stimuli (LeDoux, 1998), higher amygdala 

responsivity may reflect greater biological tuning to socially-relevant information. While 

increased attentional capture of relevant social information, such as faces, may be adaptive for 

survival, it may also interfere with cognitive function if task demands are high. In particular, 

because processing capacity of the brain is limited, emotion processing must be dampened to 

effectively carry out higher-order cognitive processes. For instance, regional blood flow of the 

amygdala decreases during cognitively demanding tasks, whereas it increases during specific 

emotion-related tasks (Drevets and Raichle, 1998). In line with this framework, we observed that 

higher amygdala response, likely reflecting emotional processing, led to impaired task 

performance in A-allele carriers when cognitive demands were high (i.e., during the face-

categorization Stroop task). In contrast, when tasks demands were low (i.e., during the face-

matching task), elevated amygdala activity observed in A-allele carriers did not predict lower 

performance. This dissociation is consistent with conceptual models proposing that emotion 

processing can hinder or facilitate ongoing processing depending on the level of cognitive 

demand (Pessoa, 2009).  

 Follow-up voxel-wise analyses indicated that OXTR effects on amygdala response during 

the face-categorization task were likely localized to the basolateral amygdala subdivision. 

Basolateral amygdala is a main target of sensory afferents to the amygdala (McDonald, 1998) 

and plays an important role in social cue processing (Adolphs, 2001). Receiving highly 
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processed sensory information enables basolateral amygdala to detect biologically relevant 

stimuli in the environment (Sah et al., 2003a). Importantly, administration of intranasal oxytocin 

appears to alter activity in the basolateral amygdala (Gamer et al., 2010), which may partially 

explain oxytocin’s implicated role in attenuating fear responses. In this light, lower ability to 

dampen basolateral amygdala response to conflict may reflect lower filtering of sensory 

information in OXTR A-allele carriers. Consistent with this hypothesis, elevated neural activity 

was accompanied with greater performance decrements to conflict in A-alleles.  

Prior neuroimaging studies show that oxytocin administration dampens amygdala 

responses to salient social cues (Domes et al., 2007; in adult males). By altering oxytocin levels 

or receptor binding/density, the OXTR polymorphism may similarly modulate the tuning of the 

amygdala to salient social information. Here, we found OXTR effects on amygdala activity 

during face processing in youth. We did not observe OXTR effects during processing of fearful, 

angry, or happy expressions, but found response to neutral faces to differ by OXTR genotype. 

This suggests that, for children, the OXTR polymorphism affects sensitivity to ambiguous social 

threat cues, but not to signals with clearer biological relevance (e.g., an angry face signals direct 

threat to the perceiver). As noted above (see Methods), elevated amygdala response to facial 

expressions of neutral valence may correspond to a negative interpretation of these stimuli in 

youth. Future studies will be needed to determine if the observed increase in amygdala response 

in A-alleles coincides with a greater perception of threat, negativity, or ambiguity in these cues.  

Heightened perceptual processing of ambiguous social cues may increase risk for 

disorder in youth who are predisposed to interpret these cues as threatening, such as those reared 

in adverse environments. In accord with this notion, we discovered an association between 

amygdala reactivity and ELS exposure in OXTR A-allele carriers. Youth with ELS carrying the 
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OXTR A-allele appeared to manifest increased correlates of risk for internalizing conditions; they 

had greater amygdala responses to salient social cues. It is possible that those with both genetic 

susceptibility and ELS exposure not only exhibit increased sensitivity to conflicting or 

ambiguous stimuli, but also process them more deeply, thereby increasing susceptibility to 

negative rumination. This interpretation is consistent with research indicating that youth at risk 

for depression have a higher tendency to perceive ambiguous stimuli as threatening (Dearing and 

Gotlib, 2009), and fits with cognitive theories of depression which hold that greater tendency to 

interpret ambiguous situations as negative precipitates negative mood states (Foland-Ross and 

Gotlib, 2012). And indeed, elevated anxiety and depressive symptoms are reported in OXTR A-

alleles in the context of ELS (Thompson et al., 2011). 

Given that impairments in social behavior are ubiquitous in neuropsychiatric disorders, 

the observed effects of the OXTR polymorphism on amygdala processing of social cues have 

relevance for disease. These findings may also have implications for adolescent development 

outside the realm of psychopathology. In particular, higher amygdala reactivity to ambiguous 

social stimuli in OXTR A-allele carriers could hamper development in the social domain, as these 

individuals may be less likely to engage in social risk-taking and exploration or to initiate new 

peer relationships. On the other hand, such a behavioral pattern might also serve a protective 

function by increasing wariness even in the absence of overt threat cues. These predictions are 

supported by research showing that intranasal oxytocin administration in humans increases 

willingness to accept social risks arising through interpersonal interactions (Kosfeld et al., 2005), 

as well as animal literature highlighting oxytocin’s effects on pro-social approach behavior 

(Lukas et al., 2011).  
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To our knowledge, this is the first study to examine neural variation associated with the 

OXTR polymorphism rs2254298 in a predominantly African American sample. By replicating 

effects observed in other demographic samples (Inoue et al., 2010, Furman et al., 2011) this work 

extends findings to wider ethnic populations. We found that amygdala structural and functional 

neurobiology varies with rs2254298 genotype in youth. Although mixed-race samples may 

improve generalizability of findings, results may be biased by population substructure and allelic 

frequencies may differ by population. The current analysis was sensitive to these concerns. First, 

allele frequencies in the sample were in line with expected frequencies for the racial majority 

group (African Americans). Second, although genomic control or ancestry informative marker 

methods were unavailable here, we did attempt to rule out population stratification by 

reanalyzing the data controlling for self-reported race/ethnicity, which shows high 

correspondence with genotyped markers (Divers et al., 2011, Levran et al., 2012). Additionally, 

OXTR groups did not differ on race, and sub-analyses in African American participants (the 

racial majority) were consistent with results reported in the full sample. Findings of these control 

analyses are consistent with a lack of confounding population substructure. Nonetheless, our 

sample of urban, low-income, minority youth represents an under-studied population at high risk 

for ELS and associated adverse outcomes (e.g., depression, PTSD, substance use disorders). 

Thus, research in this area may be useful for informing broader public health policies and 

practices. These results should nevertheless be considered preliminary and replication in other 

samples is needed.  

We note several limitations of the current study. First, the functionality of the OXTR 

polymorphism rs2254298 is currently unknown. While higher peripheral oxytocin levels have 

been reported in OXTR rs2254298 A-allele carriers compared to G/G homozygotes (Apter-Levy 
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et al., 2013), how this variant translates into the actual availability or binding of oxytocin in the 

brain is unclear. Next, prior studies in adults using acute oxytocin administration have identified 

sex differences (Domes et al., 2010, Weisman et al., 2013) that were not replicated here. This 

may be the result of immature sexual dimorphism in childhood, because this was a gene variant 

rather than an acute administration study, or because this interaction may have been 

underpowered. These possibilities cannot be resolved here, but lack of sex differences have been 

observed in adult studies that evaluated the gene variant investigated here (Inoue et al., 2010). 

This introduces the idea that acute effects of oxytocin administration differ from more stable 

effects of functional gene polymorphisms. In addition, sex distribution did not differ between 

groups for volumetric analyses or for the face-matching task. For the face-categorization task, 

there was a higher proportion of female participants in the G/G homozygote group relative to the 

A-allele carrier group. However, a converging pattern of results across tasks, namely higher 

amygdala reactivity in A-alleles, suggests that observed effects are not driven by sex. 

Nonetheless, our power to detect OXTR-by-sex interactions was limited and we urge future 

studies with larger samples to address this important question. Third, rs2254298 is one of two 

widely studied oxytocin-system related polymorphisms. We did not examine effects of other 

common OXTR variants, which may also modulate oxytocin system function. Here, we chose to 

focus on rs2254298 to extend previous work documenting effects of this polymorphism on 

amygdala volume and emotional symptomology in a separate sample of mixed-race youth 

(Thompson et al., 2011). A recent meta-analysis (Bakermans-Kranenburg and van IJzendoorn, 

2014) found null effects of both OXTR rs2254298 and OXTR rs53576 on psychopathology and 

social behavior. The current study, as well as prior work in adolescents (Thompson et al., 2011) 

demonstrate that genotype alone may not be sufficient to produce psychopathology. Rather, a 



www.manaraa.com

43 

 

stress diathesis model may be more appropriate for understanding the downstream consequences 

of genetic variation in the OXTR gene.  

Given what appears to be a critical developmental period for solidifying the relation 

between genotype and amygdala structure and function in the context of ELS, regulation of 

amygdala sensitivity may be a promising target for preventive interventions in early life before 

morphological changes become hardwired in the brain or before clinically-significant conditions 

emerge. For instance, selective serotonin reuptake inhibitors, often used to treat anxiety and 

depression, are effective at attenuating amygdala responses. Likewise, oxytocin administration 

has been shown to dampen amygdala responses, and is emerging as a potential therapeutic for 

stress-related clinical conditions. Given evidence that amygdala responsivity is under control of 

both oxytocin and serotonin (Mottolese et al., 2014), interventions should take into account 

individual variation in both systems. 
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CHAPTER 3: ALTERED AMYGDALA CONNECTIVITY IN TRAUMA-EXPOSED 
URBAN YOUTH 

 
3.1 Introduction 

 Estimates regarding rates of exposure to traumatic events in childhood range widely from 

15-60% (Kessler et al., 1995, Dube et al., 2001, Stein et al., 2010), with strong evidence for the 

highest incidence occurring in urban, inner city settings (almost 90%; Gillespie et al., 2009, 

Goldmann et al., 2011). Trauma and stress injure the brain, precipitate cognitive-behavioral, 

emotional, and somatic problems, and are strong predictors of psychiatric illness (McEwen, 

2012). Trauma in early life is especially harmful – associated with about 50% of childhood 

psychiatric disorders, and 30% of later-onset clinical disorders (Green et al., 2010).  

 Neurological evaluation of the link between trauma and psychiatric illness converges on 

amygdala and prefrontal brain regions. The amygdala is essential for the detection of threat and 

enhancement of vigilance (Zald, 2003), and is a central activator of the physiologic stress 

response (Dedovic et al., 2009). In contrast, the prefrontal cortex (PFC) is critical for regulation 

of emotion (Quirk and Beer, 2006). Animals that experience early life adversity show structural 

and functional changes in both the amygdala (see Malter Cohen et al., 2013b for a review) and 

PFC (review by McEwen and Morrison, 2013). Furthermore, early life adversity may also 

perturb the direct bidirectional connections between these two regions (review by Tottenham and 

Sheridan, 2009).  

 Research in humans and animals consistently demonstrates altered frontoamygdala 

connectivity is another consequence of early life stress (Gee et al., 2013a, Malter Cohen et al., 

2013a, Philip et al., 2013, Grant et al., 2014). Compromised connectivity between the amygdala 

and PFC has been implicated in the pathophysiology of stress-related disorders. Specifically, 

altered frontoamygdala connectivity has been observed in anxiety (Kim and Whalen, 2009, Roy 
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et al., 2013), depression (Tang et al., 2013), and PTSD (Edwards et al., 2013, Stevens et al., 

2013, Brown et al., 2014). It is possible that altered frontoamygdala connectivity may emerge 

early in life, proximal to negative traumatic experiences, and that this shift may be formative in 

determining healthy or deleterious outcomes for the individual. After all, frontoamygdala 

circuitry undergoes rapid changes across childhood and adolescence (Hare et al., 2008, Gee et 

al., 2013b, Gabard-Durnam et al., 2014), and thus alterations occurring during this period may 

have lasting effects.  

 While animal research has addressed embedding of stress exposure in frontoamygdala 

pathways in early life, research in humans is relatively recent. Gee (2013a) and Nooner (2013) 

provided the first studies of early life stress and functional connectivity (FC) in 

children/adolescents. Gee and colleagues examined task-related variation in FC associated with 

orphanage rearing in 6 to 17 year olds during a face-processing task, whereas Nooner and 

colleagues examined how trauma-symptoms in a healthy sample of community youth relate to 

variations in intrinsic FC during resting-state. Both studies evidenced altered frontoamygdala 

FC, with orphanage-reared children showing more medial frontal and typically developing youth 

showing more lateral frontal amygdala FC effects. Frontoamygdala FC alterations have also been 

shown to relate to trauma, diurnal cortisol, and internalizing symptoms in a longitudinal 

community sample of young adults (18 year olds; Burghy et al., 2012, Herringa et al., 2013a). 

These studies compel the need for more research during formative years, prior to when 

psychopathology becomes chronic. Research that examines youth at high risk for developing 

clinical disorders could lead to identification of latent neural risk factors contributing to 

psychopathology in the aftermath of trauma exposure.  
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 Here, we examine intrinsic resting-state neural FC in urban, low-income, minority 

trauma-exposed and comparison youth (ages 9-15). Past research shows not only that trauma 

frequency is extreme in African Americans living in impoverished urban areas, but also that 

negative consequences of trauma in urban, African American communities may be more severe 

(Alim et al., 2006). For example, while approximately 20% of trauma-exposed individuals in the 

general population subsequently develop PTSD, African American urban residents who 

experience trauma are nearly two times more likely develop PTSD (Goldmann et al., 2011). In 

addition, lower income is a significant predictor of more severe emotional psychopathology 

following trauma (Lowe et al., 2014). Thus, additive effects of trauma frequency and stress 

burden may be particularly deleterious to healthy emotional development. Investigating the 

correlates of trauma exposure on the developing brain in a low income, African American urban 

cohort of youth provides an opportunity to identify neurological changes in those who are at 

highest risk for developing psychopathology. 

3.2 Methods 

 3.2.1 Participants 

 The current study evaluated 42 urban youth, ages 9-15 (mean = 12.6, SD = 2.1). 

Participant ages were selected to align with the emergence of puberty; puberty has been 

identified as a time when affective disorders frequently manifest (Angold et al., 1998). The 

majority of participants (n = 27) reported annual incomes of less than $40,000, and only a small 

number (n = 6) reported incomes greater than $60,000. Participants were drawn from a larger 

study, and chosen to represent trauma-exposed (n = 21) and comparison (n = 21) groups matched 

on age and sex. Data from 18 participants from both groups have been reported previously 

(Thomason et al., 2013). Participants were recruited through advertisements posted on the 
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Wayne State University website, Craigslist (Detroit), printed flyers, or through Metro Detroit 

mental health clinics. Exclusionary criteria included: English as a second language, lower than a 

2nd grade reading level, history of brain injury, neurological or movement disorders, or presence 

of magnetic resonance imaging (MRI) contraindication. Parental informed written consent and 

child/adolescent assent were obtained prior to participation. Demographic and behavioral 

measures were administered during a laboratory visit, and MR imaging was performed during a 

subsequent visit (~2 weeks following the laboratory visit). All experimental procedures were 

approved by the Human Investigation Committee of Wayne State University.  

 3.2.2 Demographic data analysis 

 Highest level of parent/caregiver educational attainment and annual household income 

were coded as ordinal variables and compared between groups using Mann-Whitney U tests. 

Independent samples t-tests or chi-square tests were used to test for group differences in age, sex, 

IQ (derived from the Kaufman Brief Intelligence Test, version 2; Kaufman and Kaufman, 

2004b), parent report of child race/ethnicity, and pubertal development (using Tanner staging; 

Marshall and Tanner, 1968). Effects were considered significant at p ≤ 0.05. Statistical analyses 

were 2-tailed, and implemented in IBM SPSS Statistics 21 (SPSS, Inc., Chicago, IL).  

 3.2.3 Trauma exposure 

 Utilizing both parent and child endorsements, participants that experienced at least one 

trauma indicated on the Children’s Trauma Assessment Center Screen Checklist were 

categorized as ‘trauma’ (source: Michigan Trauma Assessment Center). Forms of trauma 

included significant events that threatened their safety (e.g., physical or sexual abuse), 

undermined their security (e.g., neglect), caused unmanageable stress (e.g., witness a violent 
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crime), or compromised interpersonal and family relationships (e.g., emotional abuse). Number 

and type of endorsed traumas are provided in Table 3.  

 3.2.4 Self-reported affect measures 

Participants completed two validated self-report questionnaires: the 10-item Children’s 

Depression Inventory (CDI; Saylor et al., 1984) and the 41-item Screen for Childhood Anxiety-

Related Disorders (SCR; Birmaher et al., 1997). The SCR was administered during the lab visit 

and again at the MRI visit. Total SCR score was summed for each visit and then averaged, as lab 

and MRI scores were highly correlated, r(42) = 0.76, p < 0.001. A visual analog scale (VAS) 

was used to obtain an average rating of fear/anxiety during the MRI visit (repeat measures at 30-

minute intervals) as previously described (Thomason et al., 2013). 

 3.2.5 Imaging data acquisition  

 MRI data were acquired using a 3.0 Tesla Siemens Verio scanner.  Participants were 

positioned in a 12-channel head coil and stabilized by padding to reduce motion-related artifacts. 

Participants were asked to lie quietly in the scanner with their eyes closed for the duration of the 

six-minute resting-state scan. For fMRI, a total of 180 T2*-weighted BOLD images were 

acquired (interleaved ascending acquisition) using EPI. The acquisition parameters were: 

repetition time [TR] = 2000 ms; echo time [TE] = 25 ms; flip angle = 90°; voxel size= 3.44 x 

3.44 x 4 mm; matrix = 220 x 220; and 29 slices. Additionally, T1-weighted images were 

obtained for anatomical reference with the following parameters: time [TR] = 1680 ms; echo 

time [TE] = 3.51 ms; flip angle = 9°; voxel size = 0.7 x 0.7 x 1.3 mm; matrix = 256 x 256; and 

176 slices. 

 3.2.6 Image preprocessing  



www.manaraa.com

49 

 

 Image preprocessing steps were conducted using SPM8 software (Statistical Parametric 

Mapping; http://www.fil.ion.ucl.ac.uk/spm/). After discarding the first 4 EPI volumes to allow 

for signal stabilization, images were slice-time corrected, realigned, spatially normalized to the 

Montreal Neurological Institute (MNI) template, and smoothed using an 8-mm Gaussian kernel. 

Frame-to-frame excursion, root mean square (rms), and head movement across the scan were 

calculated and averaged for translational (x, y, z) and rotational (roll, pitch, yaw) movement 

directions. Motion parameters were compared between groups using 2-tailed independent 

samples t-test. Between group motion differences were considered significant at p < 0.05. 

 3.2.7 Seed-based connectivity analysis  

 Given prior research showing altered intrinsic FC of specific amygdala subregions in 

adults with PTSD (Brown et al., 2014) and anxiety (Etkin et al., 2009), connectivity of 

centromedial (CM) and basolateral (BL) amygdala were evaluated separately. Amygdala 

subregions were the leading choice for seeded ROI analyses because of their unique connectivity 

profiles. For more detailed discussion of amygdala subregion connectivity in humans, see (Roy 

et al., 2009). The present study was centered on CM and BL subregions as these as these have 

previously been implicated in stress-related psychiatric disorders (Etkin et al., 2009, Brown et 

al., 2014). Seed regions were defined for CM and BL amygdala structural subdivisions (Amunts 

et al., 2005), following prior work (Roy et al., 2009, Qin et al., 2012). In brief, bilateral masks 

used stereotaxic, probabilistic maps of cytoarchitectonic boundaries defined by the SPM 

Anatomy toolbox (Eickhoff et al., 2005). Cytoarchitectonic maps show high reliability and 

accuracy for guiding anatomical segmentation of amygdala subregions in children as young as 

six years of age (Kim et al., 2010, Qin et al., 2012). Given that we had no a priori lateralization 

hypotheses, we averaged signal from right and left amygdala masks. FC of amygdala subregions 
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was determined by semipartial correlation using the CONN Functional Connectivity Toolbox 

(ver.12.p; www.nitrc.org/projects/conn). Between group effects were considered within an 

anatomically defined medial prefrontal region used in prior works (Etkin and Schatzberg, 2011, 

Marusak et al., 2014b). This mask was selected to encompass pregenual (pgACC) and subgenual 

(sgACC) regions of the anterior cingulate, as these regions suppress limbic reactivity through 

direct connections to the amygdala. Family-wise error (FWE) corrected p < 0.05, significance 

level was used.  

 Motion poses a significant source of noise in FC analyses. None of the participants 

included in the present study had motion exceeding 1.5 mm in any direction. We addressed 

residual motion-related artifacts in three steps. First, Siemens MRI motion correction (MoCo) 

software was used during image acquisition. This procedure retrospectively measures 6 

parameters of rigid-body translation and rotation, and produces a corrected time series using 

affine transformation. Second, functional image volumes were realigned to the mean image in 

SPM8. Third, realignment parameters (with another six parameters representing their first order 

temporal derivatives) were removed with covariate regression analysis before computing 

amygdala FC. Signals from white matter and cerebral spinal fluid were also regressed out using 

anatomical component correction (aCompCor; Behzadi et al., 2007, Chai et al., 2012). Low 

overall movement levels and lack of differences between groups augment confidence that motion 

did not compromise observed effects.  

 Secondary whole-brain analyses were performed to comprehensively evaluate 

connectivity of the amygdala. In addition to CM and BL regions, a superficial (SF) amygdala 

subregion mask was generated using procedures described above, and connectivity from this area 

was also examined for possible differences between groups. Regions showing altered FC 
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between groups were reported at a threshold of p < 0.005, cluster minimum = 10 voxels. This 

threshold was derived from suggested standards for whole-brain comparisons (Lieberman and 

Cunningham, 2009). Results that survived multiple comparisons correction for the whole brain 

(spatial cluster extent threshold; > 158 voxels for p < 0.05 FWE corrected) are denoted with an 

*asterisk in Table S1 (see the online data supplement2). To plot the direction of trauma-related 

amygdala connectivity, individual participant beta values were extracted from peaks using 4 mm 

radius spheres. Pearson correlation was used to test for associations between amygdala FC and 

anxiety, depressive symptoms, IQ, and income. All coordinates are reported in Montreal 

Neurological Institute (MNI) convention.  

 To further validate our findings, data were re-analyzed using motion “scrubbing” (Power 

et al., 2012). Specifically, movement was plotted and visually inspected for each participant 

using ArtRepair software (http://cibsr.stanford.edu/tools/human-brain-project/artrepair-

software.html). Through this process we identified 4 trauma and 3 comparison participants that 

required censorship. High-movement frames were removed, and following this, maximal 

movement for all individuals in the sample was reduced to 0.171 mm and 0.392 degrees. Major 

comparisons and study outcomes were evaluated using this alternative analytic scheme, and 

those data are reported in the online data supplement. 

3.3 Results 

 3.3.1 Participants 

 3.3.1.1 Demographics and movement. As shown in Table 2, groups did not differ in age, 

pubertal maturation, sex, race/ethnicity, parental educational attainment, or movement during the 

resting-state scan. Overall, residual movement was well within accepted standards (< 1.5 mm 

																																																								
2http://scan.oxfordjournals.org.proxy.lib.wayne.edu/cgi/pmidlookup?view=long&pmid=2583699
3	
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translational rms; cf. Fair et al., 2012). Relative to comparison youth, trauma-exposed 

participants reported lower levels of household income and IQ (see Table 2), effects that were 

anticipated based on prior work (e.g. De Bellis, 2001, Lantz et al., 2005). Follow-up analyses 

controlling for income and IQ were conducted on FC data, as described below. There were 

significantly more females than males represented across the entire sample, (χ2
(1)= 6.1, p = 

0.014). Distribution of participant race/ethnicity across the sample was representative of the 

study community (Wayne Country, Michigan; χ2
(2)= 4.09, p = 0.13; www.census.gov). 4 

participants (3 trauma, 1 comparison) were on psychotropic medications (1 on stimulants, 1 on 

selective serotonin reuptake inhibitors, 2 on serotonin-norepinephrine reuptake inhibitors, and 1 

on beta-2 adrenergic agonists). Medications were not withheld for scanning. Follow-up analyses 

excluding participants on medications yielded no changes to observed effects.   

Table 3. Demographic and Clinical Characteristics by Group 

Variable Trauma                    
(n = 21) 

Comparison            
(n = 21) 

Group 
Comparison 

(p-value) 
Age, m (SD) 12.77 (2.00) 12.32 (2.19) ns 
Pubertal Maturation (Tanner Stage), m (SD) 3.75 (0.95) 3.12 (1.38) ns 
Sex (Female), n (%) 15 (71.43) 14 (66.67) ns 

IQ, m (SD) 90.55 (10.9) 109.94 
(16.04) < 0.001 

Race/Ethnicity, n (%)    
 African American 10 (47.62) 10 (47.62) 

ns  Caucasian 4 (19.05) 10 (47.62) 

 Hispanic 3 (14.28) 0 (0) 

 Not reported 4 (19.05) 1 (4.76) 
Annual Household Income, n (%)    
 Less than $40,000 17 (81) 10 (47.6) 

0.018 
 $40,000 - $60,000 1 (4.8) 7 (33.3) 

 $60,000 - $80,000 2 (9.5) 1 (4.8) 

 $80,000 - $100,000 0 1 (4.8) 

 Over $100,000 0 2 (9.5) 
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 Not reported 1 (4.8) 0 
Highest Level of Parental Education, n (%)  
 No GED/ no high school diploma 2 (9.5) 1 (4.8) 

ns 

 GED/ high school diploma 4 (19) 1 (4.8) 

 2-year degree or some college 8 (38.1) 9 (42.9) 

 4-year degree 3 (14.3) 7 (33.3) 

 Masters 3 (14.3) 2 (9.5) 

 Doctorate 0 1 (4.8) 

 Not reported 1 (4.8) 0 
Type of Trauma Endorseda, n (%)    
 Physical abuse 4 (19%) 0  
 Neglectful home environment 3 (14%) 0  
 Emotional abuse 2 (10%) 0  
 Exposure to domestic violence 14 (67%) 0  

 
Exposure to any other violence not already 
identified  11 (52%) 0  

 Multiple separations from parent or caregiver 4 (19%) 0  
 Sexual abuse or exposure 5 (24%) 0  
Anxiety Symptoms (SCR)b, m (SD) 22.97 

(16.49) 
14.23 

(11.08) 0.05 

Depressive Symptoms (CDI)c, m (SD) 4 (5.32) 1.8 (2) ns 
Motion During Scan    

 
Translational max frame-to-frame excursion 
(SD) 

0.66 (0.31) 
mm 

0.56 (0.25) 
mm 

ns 

 
Rotational max frame-to-frame excursion 
(SD) 33.8 (15.47)° 32.09 

(18.91)° 

 Translational mean movement (SD) 0.13 (0.08) 
mm 

0.1 (0.6) 
mm 

 Rotational mean movement (SD) 6.3 (3.44)° 6.87 (4.58)° 

 Translational rms (SD) 0.1 (0.05) 
mm 

0.08 (0.02) 
mm 

  Rotational rms (SD) < 0.05 (< 
0.05)° 

< 0.05 (< 
0.05)° 

Note: aTrauma criteria are from the Children's Trauma Assessment (CTA) Center Screen Checklist (Item 1) by  
the Michigan Trauma Assessment Center. bSCR = Screen for Child Anxiety-Related Emotional Disorders.  
cCDI = Children's Depression Inventory. All p-values derived from t-tests with the exception of sex and race/ 
ethnicity comparisons, which used chi-square tests, and income and parental education, which used  

    Mann-Whitney U tests. Abbreviations: m, mean; SD, standard deviation; n, number; ns, not significant; max,  
maximum; rms, root mean squared head position change during the resting-state scan. 
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 3.3.1.2 Self-reported affect measures. Although the trauma group was not chosen on the 

basis of psychopathology, participants with histories of trauma reported higher levels of anxiety 

(SCR) relative to comparison participants (Table 3). This is consistent with reports that 

childhood trauma exposure is a strong predictor of emotional psychopathology (Kessler et al., 

1997). Follow-up analyses were conducted to account for effects of anxiety on connectivity (see 

below). While anxiety scores reported during lab and MRI visits were significantly correlated 

within subject (see Methods), it is possible that variation across visits differed between groups. 

We therefore tested for effects of visit on anxiety levels using a Group (trauma, comparison) x 

Visit (lab, MRI) ANOVA. Consistent with group differences reported above, a significant main 

effect of Group emerged, F(1, 80) = 7.08, p < 0.009. No main effect of Visit, or Group x Visit 

interaction was observed (p’s > 0.4) suggesting that trait anxiety was stable over a period of two 

weeks and variability between visits did not differ between groups. In contrast, average state 

levels of fear/anxiety during the MRI visit (VAS) did not significantly differ between groups, 

t(39) = 0.3, p = 0.77. Given that VAS ratings were previously shown to correlate with cortisol 

reactivity during the scan (Thomason et al., 2013), this result suggests that connectivity 

differences are not likely influenced by group differences in biologic stress responsivity during 

the MRI visit. Groups did not differ on trait levels of depressive symptoms, p > 0.08 (see Table 

3).  

 3.3.2 Lack of amygdala-sgACC connectivity in trauma-exposed youth  

We observed significant group differences in CM amygdala-sgACC connectivity (x = 8, y 

= 18, z = -8, pFWE = 0.022, Z = 3.80). Extraction of average connectivity strength within this 

cluster revealed that the group effect resulted from the predicted negative amygdala-sgACC FC 

in comparison participants, which was absent in trauma-exposed youth (Figure 4). CM 
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amygdala-sgACC FC was not related to anxiety (SCR, r(42)= 0.01, p = 0.92) or depressive 

(CDI, r(42) = 0.03, p = 0.83) symptoms across the sample, or within the trauma group (SCR, 

r(21) = -0.22, p = 0.34; CDI, r(21) = -0.15, p = 0.51). Group differences in CM amygdala-

sgACC connectivity remained significant when controlling for IQ (peak at x = -12, y = 40, z = -4, 

pFWE = 0.025, Z  = 3.77) and income (peak at x = 10, y = 22, z = -10, pFWE = 0.027, Z  = 3.74). 

No significant effects of trauma were observed for BL amygdala-sgACC connectivity at p < 0.05 

FWE-corrected. 

 

 

Figure 4. Absent negative centromedial (CM) amygdala-subgenual cingulate (sgACC) 
negative connectivity in trauma-exposed youth. Left: Signal was averaged across 
anatomically-defined bilateral CM amygdala source region. Right: Tukey’s boxplots depict 
connectivity values by group centered on the sgACC peak. The middle line indicates the median, 
vertical line the range, and the limits of the box represent upper and lower quartiles. Results 
significant at a threshold of p < 0.05, FWE-corrected.  
  

 3.3.3 Divergent patterns of amygdala subregion FC across the sample   

 Secondary whole-brain analyses were performed to examine connectivity of major 

amygdala subregions. FC maps across the entire sample (Figure 5) revealed unique patterns of 

connectivity for bilateral CM, BL, and SF amygdala subregions that are consistent with previous 

cytoarchitectonically-based amygdala FC studies (e.g. Roy et al., 2009, Brown et al., 2014). 

Briefly, CM showed signal covariation with striatal regions, whereas BL showed signal 
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covariation with temporal and frontal cortical regions. SF signal was strongly correlated with 

signal in limbic regions.  

 

 
Figure 5. Functional connectivity of amygdala subregions across the entire youth sample.  
Left: Inset shows anatomically-defined bilateral amygdala seed regions: CM (centromedial; red), 
BL (basolateral; blue), and SF (superficial; green). Axial slices show brain areas positively 
correlated with amygdala seed regions. Right: Surface renderings are used to depict separation 
and overlap of amygdala neural networks. Connectivity maps displayed at p < 0.005, cluster 
minimum = 10 voxels.  
 
 3.3.4 Trauma effects on amygdala whole-brain connectivity 

 Extensive differences in amygdala FC were observed between groups (see Table S1 in 

online data supplement). We also found that in a subset of areas in which groups differed, FC 

also related to income, IQ, anxiety, or depressive symptoms. Thus, not only does amygdala FC 

vary across brain areas, but this variation relates to symptom severity. Data are summarized in 

Figure 6 as radar plots, where average FC is plotted for each group, by region. Visual inspection 

of these plots suggests that, overall, individuals who have experienced trauma demonstrate 

increased positive connectivity across widespread brain regions. Consistency was observed 
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across amygdala subregions in that frontoamygdala connectivity was negative in the comparison 

group but not in trauma-exposed youth (see Figure 6). This was also true in anterior insula-

amygdala connectivity, that was more negative in comparison but not in trauma-exposed 

participants for the SF subregion (Figure 7). A different effect was observed for the dACC; there, 

we observed increased positive amygdala connectivity in comparison but not trauma participants 

(Figure 7).  

 
Figure 6. Differential patterns of amgydala subregion functional connectivity (FC) across 
the whole brain in trauma-exposed (purple) and comparison (blue) youth. Numerical values 
represent the average within-group correlation strength in areas showing significant group 
differences at the whole brain level, across frontal, limbic, parietal, subcortical, and 
temporal/occipital regions (coordinates are provided in Table S1, see online data supplement). 
Wider area on radial plots in trauma-exposed youth suggests a pattern of enhanced positive FC 
of the amygdala to many brain regions, particularly to areas of the frontal cortex. Dashed line 
indicates zero; the middle of the plot indicates negative values. Abbreviated brain regions are 
defined in Table S1 (see online data supplement).  
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Figure 7.  Regions showing group differences (trauma, purple; comparison, blue) in 
functional connectivity with BL (basolateral) and SF (superficial) amygdala. Right: Tukey’s 
boxplots depict connectivity values by group. The middle line indicates the median, vertical line 
the range, and the limits of the box represent upper and lower quartiles. Corresponding MNI 
coordinates of peak group difference (see Table S1 in online data supplement) are indicated 
adjacent to each boxplot. Results are shown at p < 0.005, cluster minimum = 10 voxels, for 
display purposes. Abbreviations: SFG, superior frontal gyrus; OFC, orbitofrontal cortex; dACC, 
dorsal anterior cingulate; INS, insula.  
 

 3.3.5 Replication of results in scrubbed data   

Data were reanalyzed utilizing censoring of high-movement frames. Following 

censoring, average group motion was < 0.05 mm and < 0.002 degrees rms. As shown in Figure 

S1 (see online data supplement), main findings of amygdala FC across the sample (Figure 5), 

and group differences in FC in the sgACC (Figure 4), superior frontal gyrus, dACC, and insula 

(Figure 7) were replicated. However, the group difference in BL amygdala-orbitofrontal cortex 

connectivity was no longer significant.  
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3.4 Discussion 

 The present study evaluates links between early life trauma and neural circuit 

organization, within a high sociodemographic risk youth sample. Our results indicate reduced 

negative amygdala-sgACC FC in trauma-exposed youth, fitting with prior observed associations 

between disrupted amygdala circuitry and emotional psychopathology. For example, alterations 

in frontoamygdala circuitry have been reported in adults with PTSD (Brown et al., 2014), and 

adolescents (Roy et al., 2013) and adults with generalized anxiety disorder (Etkin et al., 2009). 

We add to this conceptualization by discovering that experience (trauma) is associated with 

altered intrinsic amygdala FC in formative, developmental years. In particular, trauma-related 

changes were observed within amygdala-sgACC circuitry, a pathway that is critical for emotion 

regulation. These findings are in line with our recent study showing a reduced ability to regulate 

emotional conflict and an absence of negative frontoamygdala connectivity during conflict 

resolution in trauma-exposed youth (Marusak et al., 2014b). The present findings extend this 

work by demonstrating that deficits in this critical emotion regulatory pathway are present even 

when individuals are not engaging regulatory control processes.  

 Four studies most similar to the current investigation are summarized in Table S2 (see the 

online data supplement). The most comparable study, implemented by Gee and colleagues, 

evaluated FC in orphanage-reared youth during a face processing task (Gee et al., 2013a). 

Focusing on the same frontoamygdala circuitry emphasized here, they too found abnormalities in 

neural FC between groups. Interestingly, their effects were related to the type of emotional face 

being processed. That is, between group differences were noted during the processing of fear 

faces, but the direction of effects differed during processing of happy faces. This result, paired 

with data presented here about intrinsic FC during resting-state suggests that dynamics in 
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frontoamygdala circuits in trauma-exposed youth may relate to processing demands, and results 

obtained should be considered in that light. Gee and colleagues also provide evidence that the 

age of participants being examined may interact with observed effects. They found that 

comparison and orphanage-reared participants exhibited different patterns of age-related change 

in frontoamygdala FC to fear faces. Specifically, between group differences appear to have been 

significant in children but not adolescents. This could be interpreted as a reduction in differences 

between groups with age. Though the cross-sectional nature of this sample precludes direct 

evaluation of this possibility, this observation can be regarded in consideration of current theory 

that principals of neural connectivity at one point in life may be adaptive, while at another may 

confer risk (Tottenham, 2013). 

 We interrogated amygdala FC from three amygdala subregions. CM amygdala is 

involved in allocating attention to relevant stimuli (Davis and Whalen, 2001) and mediating 

increased vigilance (Dringenberg and Vanderwolf, 1996). In contrast, BL amygdala has been 

linked to associative learning processes, and the SF amygdala has been implicated in 

social/affective processing (LeDoux, 2003, Phelps and LeDoux, 2005, Goossens et al., 2009). 

Given that amygdala subregions exhibit unique developmental patterns of FC across childhood 

and adolescence (Gabard-Durnam et al., 2014), it is likely that trauma impacts these circuits in 

different ways. We support this supposition by having attained commonalities and discrepancies 

in effects across subregions. Commonalities were observed across amygdala subregions such that 

youth that endured traumatic experiences tended to have diminished frontoamygdala 

connectivity. Discrepancies were noted for regions of the striatum, parietal regions, and regions 

comprising the default mode brain network (e.g., precuneus and posterior cingulate). For these 

areas, CM and BL showed trauma-related FC effects but SF did not. In contrast, analysis of SF 
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connectivity revealed trauma effects in regions that comprise the salience network of the brain, 

the insula and dACC, whereas other subregions did not. Thus, amygdala subregions critical for 

learning and attention and for social/affective processing demonstrate overlapping, but also 

distinct trauma-related alterations in connectivity. 

 Our results support a model of reduced connectivity in emotion regulatory circuitry in 

urban youth with histories of trauma. Amygdala-medial prefrontal correlations are negative at 

rest (Gee et al., 2013b) and during the regulation of emotional responding (Hare et al., 2008), a 

pattern of connectivity thought to index top-down regulatory control. Behaviorally, loss of 

inhibitory affective control has been associated with exposure to trauma (Pechtel and Pizzagalli, 

2011) as well as presence of clinical mood disorders (Etkin et al., 2013). Prior research has also 

described negative attention bias and augmented vigilance in those with histories of early life 

trauma exposure (Pollak, 2008). Furthermore, studies using task-based fMRI show hyperactivity 

of the amygdala and/or hypoactivity of medial prefrontal regions in individuals with anxiety 

(McClure et al., 2007), PTSD (Etkin and Wager, 2007), and in children with histories of early 

adversity (Tottenham et al., 2011, McCrory et al., 2013), which may reflect failure of prefrontal 

regions to regulate amygdala reactivity. The direction of our effects (more negative 

frontoamygdala FC in comparison participants) suggests reduced top-down control via 

frontoamygdala neurocircuitry may be a consequence of early traumatic experiences.  

 Whole-brain exploratory analyses identified stronger amygdala-anterior insula 

connectivity in trauma-exposed youth. Increased FC indicates greater signal covariance between 

regions that detect threat and generate fear responses (i.e., amygdala; LeDoux, 2003) and process 

meaning and prediction of aversive bodily states (i.e., insula; Craig, 2011). Stronger amygdala-

insula FC has also been reported in adults with PTSD (Rabinak et al., 2011) and adolescents with 
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GAD (Roy et al., 2013), highlighting the relevance of this pathway for clinical disorders. 

Moreover, task-based fMRI studies have demonstrated increased amygdala and insula reactivity 

in children exposed to violence (McCrory et al., 2011) and soldiers that endure combat stress 

(van Wingen et al., 2011). Increased functional covariance in the amygdala and insula at rest 

suggests they may be primed for rapid co-activation, or that functions subserved by these regions 

tend to be more coordinated.  

 Our results indicate significantly reduced (positive) amygdala-dACC connectivity in 

trauma-exposed youth. Whereas ventral aspects of the ACC (e.g., pregenual and subgenual 

regions) are implicated in emotion regulation, dACC is associated with the expression of fear 

(Etkin et al., 2011). Evidence suggests that top-down (i.e., dACC/lateral prefrontal-based) forms 

of emotion regulation work by recruiting the ventral vACC, which dampens limbic reactivity 

directly (Etkin et al., 2011). Fitting with this conceptualization, our data show congruent between 

group effects in dACC and sgACC. Dorsal aspects of the ACC are also implicated in 

sympathetic nervous arousal (Critchley, 2005). Thus, our altered amygdala-dACC FC results 

may reflect aberrant modulation of autonomic nervous system function. This is consistent with 

reports of increased arousal and fear in trauma-exposed youth, which may contribute to the 

development of clinical disorders (e.g., anxiety; Glaser, 2000).  

 We observed that differences in neuroconnectivity between trauma-exposed and control 

groups were associated with depression or anxiety symptomology only in select regions, 

including the sensorimotor cortex, middle temporal gyrus, and superior parietal cortex. This is 

highly consistent with the observation that trauma exposure does not precisely predict emergence 

of psychopathology. Considerable data has shown that outcomes resulting from trauma exposure 

vary greatly across individuals (Cicchetti and Rogosch, Felitti et al., 1998, Tottenham and 
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Sheridan, 2009). Thus, one would not expect that the relationship between brain measures and 

previously experienced trauma would be ubiquitously significantly correlated. These variables 

are neither orthogonal, nor perfectly correlated. Thus, having observed some but not complete 

overlap in significance could have been predicted. Similar consideration could be predicted for 

observed associations in income and IQ, all of which are presented in superscript in Table S1 

(see the online data supplement). 

 Given increased awareness that motion confounds interpretation of fMRI data and the 

resulting shift toward rigorous approaches to dealing with motion in resting state data, we 

reanalyzed all data using an alternative scrubbing approach (Deen and Pelphrey, 2012, Van Dijk 

et al., 2012, Power et al., 2015). We saw that observed main effects were consistent, with the 

exception of a group difference in the orbitofrontal cortex that did not hold after scrubbing. It is 

possible this result did not replicate because the group difference covered a smaller territory to 

begin with (15 voxels), and because clusters smaller than 10 contiguous voxels are not reported 

as significant. The reason that in large part we saw consistent effects in scrubbed and non-

scrubbed data may be due to the low overall movement profile of participants in the original 

analyses.  

 Our results underscore that traumatic stress may alter corticolimbic circuitry in the 

immature brain and this may precede the onset of clinically significant conditions. There is 

evidence suggesting that changes in frontoamygdala circuits persist even decades later into 

adulthood (Dannlowski et al., 2012), emphasizing the relevance of early life exposures for 

lifelong socioemotional functioning. Pharmacological treatment (i.e., fluoxetine) has been shown 

to normalize alterations in frontamygdala connectivity in depressed adults (Chen et al., 2008), an 

encouraging result. While altered amygdala connectivity may reflect ontogenetic adaptation to an 
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unsafe rearing environment, it is possible that these neural changes confer elevated threat 

vigilance, which may be detrimental to healthy emotional development. For instance, it has been 

suggested that increased amygdala-insula FC mediates anxious anticipation of negative events 

(Carlson et al., 2011). Recalibration of neural connectivity in corticolimbic circuitry in early life 

may be detrimental to evaluation of threat and safety, and compromise a child’s ability to master 

age-appropriate skills in social and cognitive domains.  For example, altered connectivity may 

reflect changes in synaptic function within this emotion regulatory network or reduced priming 

of network components that allow for rapid control of emotional responding.  

 Our findings should be considered in light of limitations. First, we were not sufficiently 

powered to differentiate results based on onset (age) or type of trauma. While retrospective 

analysis shows that trauma onset and trauma type relate to distinctive patterns of emotional 

functioning (English et al., 2005), prior studies also document nonspecific effects of trauma type 

on outcomes (Arata et al., 2007, Collishaw et al., 2007) and some suggest that disentangling 

unique effects may result in overly narrow interpretations (Green et al., 2010). Next, participants 

were drawn from a larger study, and were not selected on the basis of IQ or income. As a result, 

groups were not matched on these variables. This is not surprising given the strong association 

between these variables and trauma prevalence (De Bellis, 2001), but also not ideal for 

disentangling connectivity effects. However, the alternative is to select matched samples that 

may not convey the natural conditions present in trauma with regard to neural connectivity. 

Moreover, we are assured by the consistency of our findings with both animal and human 

research (Gee et al., 2013a, Malter Cohen et al., 2013a, Brown et al., 2014), and because follow-

up analyses indicated that amygdala-sgACC results held when controlling for income and IQ. In 

addition, we provide areas that are influenced by trauma exposure and other risk factors (i.e., 
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poverty, IQ, anxiety, depression). Interactions between these variables are areas for future 

research. While we did not find an association between frontoamygdala connectivity and anxiety 

or depressive symptoms, it is possible that additional symptom-brain associations would be 

detected with a larger sample. Along this line, an additional consideration is the sample size is 

relatively small (n = 42), and findings are correlational in nature - thus precluding ability to make 

causal attributions about changes in frontoamygdala connectivity and the experience of 

childhood trauma. Future longitudinal examinations of amygdala connectivity in larger samples 

will be necessary to better understand mechanisms contributing to neural circuit reorganization 

following early life stress. Finally, poor spatial resolution of standard fMRI acquisitions and 

susceptibility of the amygdala to EPI image distortions and draining vein effects (Merboldt et al., 

2001) may lead to spatial localization errors. Furthermore, use of an 8 mm smoothing kernel to 

investigate small volumes such as amygdala subregions is not an optimal design. Despite these 

considerations, cytoarchitechtonically-based amygdala FC analyses have yielded consistent, 

replicated delineation of differential connectivity of major amygdala subregions (Etkin et al., 

2009, Roy et al., 2009, Roy et al., 2013, Brown et al., 2014). Also, the fact that patterns observed 

here replicate prior neuroimaging and anatomical work in animals affords further confidence in 

the approach.  

 3.4.1 Conclusions 

 Reduced negative amygdala-sgACC connectivity was observed in a sociodemographic 

risk sample of youth exposed to severe trauma. Isolation of these effects augments prior studies 

in adults obtaining similar results by evaluating intrinsic connectivity in formative years (e.g., 

childhood) and by measuring change in a sample at substantially increased risk for developing 

clinical syndromes (i.e., urban, low income, minority). Our results support the supposition that 
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the biological embedding of adversity in early life may include changes in neural connectivity, 

which in turn may alter interactions with the world and susceptibility to disease.  
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CHAPTER 4: CHILDHOOD TRAUMA DISRUPTS THE AUTOMATIC REGULATION 
OF EMOTION PROCESSING 

 
4.1 Introduction 

Converging evidence suggests that trauma exposure, particularly in early life, 

fundamentally alters the way emotional information is processed and prioritized. Indeed, 

behavioral studies in children with histories of trauma show enhanced attention to and difficulty 

disengaging from emotional stimuli (Tottenham et al., 2010). Early life trauma exposure is a 

potent risk factor for neuropsychiatric disorders including anxiety, depression, and posttraumatic 

stress disorder (Kaufman et al., 2000, Gilbert et al., 2009), which are also hallmarked by 

abnormalities in the processing and regulation of emotion (Etkin and Wager, 2007). Examining 

emotion regulation in trauma-exposed children and adolescents (youth) who are at elevated risk 

for developing emotional psychopathology may illuminate biological pathways that link trauma 

exposure in early life to subsequent emergence of clinical disorder.  

Behavioral studies in trauma-exposed individuals report deficits in cognitive control and 

emotion regulation (Tottenham et al., 2010, Pechtel and Pizzagalli, 2011), processes that are 

known to develop across the first two decades of life (Casey et al., 1997). Brain regions 

subserving these functions (e.g., pgACC, dorsolateral prefrontal cortex [DLPFC]) also show 

protracted development, and are particularly vulnerable to the deleterious effects of early life 

stress (Pechtel and Pizzagalli, 2011). It is therefore critical to identify the neural and behavioral 

correlates of trauma exposure during a time when brain circuits are still forming, and when 

interventions can be maximally impactful. Yet, neurobiological research examining emotion 

regulatory pathways in youth exposed to trauma is limited.  

Emerging research supports the notion that behavioral alterations observed in trauma-

exposed youth may relate to changes in underlying neurobiological processes. For instance, 
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children with early life trauma exposure show exaggerated amygdala response to threatening 

cues (McCrory et al., 2011), and altered connectivity in brain systems relevant for detecting and 

processing emotional information (Gee et al., 2013a, Thomason et al., In Press). Together, it 

appears that early life adversity is associated with reorganization of neural circuits in ways that 

enhance processing of salient emotional stimuli. Altered processing of emotional information 

may underlie or potentiate emotion regulation deficits reported in individuals with histories of 

early life trauma (see Pollak, 2008 for a review).  

 One way to examine emotion regulatory control processes is through neuropsychological 

tasks where emotional distracters are in direct conflict with task-relevant emotional information 

(see Fig.1). Emotionally incongruent stimuli, such as the word ‘FEAR’ superimposed on a happy 

face, cause reduced accuracy and greater reaction time (RT) interference (i.e., slowdowns). The 

amount of emotional ‘conflict’, or interference generated by incongruent stimuli (incongruent 

minus congruent trials [I-C]), is associated with activity in the amygdala (Etkin et al., 2006), a 

brain region that monitors and detects salient environmental stimuli (Whalen, 1998), and 

DLPFC, which may reflect effortful attentional control (Derrfuss et al., 2005).  

When individuals engage emotion regulatory systems, they become more prepared to 

inhibit immediate subsequent conflict. As a result, accuracy is improved and RT interference is 

reduced for incongruent trials if they are preceded by another incongruent trial rather than a 

congruent trial (iI-cI; Botvinick et al., 1999, Botvinick et al., 2001). This effect, termed “conflict 

regulation”, seems to occur outside of conscious awareness and thus is a type of automatic 

emotion regulation (Etkin et al., 2010). Prior fMRI and lesion studies show that automatic 

emotional conflict regulation relies on inhibited processing of emotional distracters through top-

down (i.e., pgACC) modulatory control of amygdala responsivity (Etkin et al., 2006, Egner et al., 
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2008, Maier and di Pellegrino, 2012). Perturbations in this critical emotion regulatory pathway 

have been observed in adults with anxiety and depression (Etkin and Schatzberg, 2011), and may 

underlie emotion regulatory deficits observed in adults with early life trauma (Ford, 2005).  

The present study examines the spontaneous regulation of emotional processing in a 

sample of trauma-exposed, urban, low-income, minority youth at high risk for psychopathology. 

Here, we define childhood trauma as the experience of event(s) that threaten a child’s safety (i.e., 

witness violence), undermine their security (i.e., neglect), or fragment attachment bonds (i.e., 

abuse). We utilized an adapted version of the emotional conflict task (Etkin et al., 2006) for 

children, by using salient peer emotion faces. Based on behavioral research in trauma-exposed 

youth (Tottenham et al., 2010) and prior applications of the emotional conflict task in adults with 

anxiety and major depressive disorder (Etkin et al., 2010, Etkin and Schatzberg, 2011), we 

hypothesized that trauma-exposed youth would exhibit greater deficits in ability to ignore 

emotional distracters that are task irrelevant, and reduced ability to regulate emotional conflict. 

Our analyses focused on amygdala-pgACC circuitry, given prior work emphasizing that this 

pathway underlies emotional conflict regulation through inhibition of amygdala reactivity (Etkin 

et al., 2006). Specifically, we predicted higher amygdala response to conflict, lower pgACC 

response during conflict regulation, and lower negative amygdala-pgACC functional 

connectivity during conflict regulation in trauma-exposed youth. We also tested for the presence 

of compensatory regional responses in the DLPFC during conflict regulation - previously 

observed in depressed but not anxious adults (Etkin and Schatzberg, 2011). Finally, we tested 

whether neural function mediates the association between trauma exposure and emotional well-

being. In particular, we evaluated anxiety and depression symptoms, and trait RS. The latter was 

of interest because of emerging research showing that diminished RS is a promising marker of 
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vulnerability to affective disorders following stress (Bogdan et al., 2013). Reduced emotion 

regulatory ability may be associated with changes in reward function. We therefore tested if 

higher amygdalar responses to conflict mediated the association between trauma exposure and 

low RS.  

4.2 Methods 

 4.2.1 Participants 

A total of 51 children and adolescents, recruited through online advertisements or child 

psychiatry clinics (Detroit, Michigan), participated in this fMRI study. Exclusionary criteria 

included: English as a second language, lower than a 2nd grade reading level, history of brain 

injury, neurological or movement disorders, or presence of MRI contraindications. Parental 

informed written consent and child/adolescent assent were obtained prior to participation.  

 4.2.2 Trauma and Clinical Measures 

Using both parent and child report, participants who endorsed (lifetime) at least one 

trauma itemized on the Children’s Trauma Assessment Center Screen Checklist (source: 

Michigan Trauma Assessment Center) were categorized as ‘trauma’. Number and type of 

endorsed traumas are provided in Table 4. Participants with movement > 4 mm in the scanner (n 

= 13; 3 trauma, 10 comparison), accuracy < 50% (n = 5; 1 trauma, 4 comparison), or errors in 

behavioral data collection (n = 2; 1 trauma, 1 comparison), were excluded from analyses. 

Therefore, all neuroimaging data are reported for 14 trauma-exposed and 16 age-, sex-, and IQ-

matched comparison youth. For completeness, all participants tested with usable behavioral data 

were included in behavioral analyses. This resulted in the addition of two participants (1 trauma, 

1 comparison) that did not qualify for neuroimaging analyses (n = 15 trauma; n = 17 

comparison). IQ was assessed using the Kaufman Brief Intelligence Test (KBIT v.2; Kaufman 
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and Kaufman, 2004a). Participant ages (9-16) were selected to align with the emergence of 

puberty; puberty has been identified as a time when neuropsychiatric disorders frequently 

manifest (Angold et al., 1998). Pubertal development was assessed using Tanner staging. 

Following prior work (Forbes et al., 2009), participants were categorized as pre/early (Tanner 

stages 1-2) or mid/late pubertal (stages 3-5). Effects of pubertal maturation on trauma-related 

group differences were examined.  

Table 4. Participant demographics by group     

    Trauma              
(n = 14) 

Comparison       
(n = 16) 

 Age, m (SD) 12.7 (2.09) 12.76 (2.21) 
 Sex (female), n (%) 10 (71.4) 14 (87.5) 
 IQ, m (SD) 100 (13.27) 102.57 (13.8) 
 Pubertal Maturation, n (%)   

 
Pre/early pubertal (Tanner stages 1-2) 5 (35.7) 5 (31.2) 

 
Mid/late pubertal (Tanner stages 3-5) 9 (64.3) 11 (68.8) 

 Race/Ethnicity, n (%)   

 
African American 5 (35.71) 9 (56.25) 

 
Caucasian 3 (21.43) 5 (31.25) 

 
Hispanic 2 (14.29) 0 

 
Biracial 1 (7.14) 1 (6.25) 

 
Not reported 3 (21.43) 1 (6.25) 

 Household Annual Income, n (%)   

 
Less than $40,000 11 (78.57) 7 (43.75) 

 
$40-60,000 1 (7.14) 5 (31.25) 

 
$60-80,000 1 (7.14) 2 (12.5) 

 
Over $80,000 0 2 (12.5) 

 
Not reported 1 (7.14) 0 

 Type of Trauma Endorsed, n (%)   

 
Physical abuse 2 (14) 0 

 
Neglectful home environment 3 (21) 0 

 
Exposure to domestic violence 7 (50) 0 

 

Exposure to any other violence not already 
identified 7 (50) 0 

 
Multiple separations from parent or caregiver 2 (14) 0 

 
Sexual abuse or exposure 3 (21) 0 

 Anxiety Symptomology (SCR), m (SD) 19.29 (13.67) 15.18 (11.38) 
 Depressive Symptomology (CDI), m (SD) 2 (2.57) 2.12 (2.47) 
 Reward Sensitivity (normalized; BAS), m (SD) 0.06 (0.56) -0.25 (.84) 

 
Reward responsivity 17.47 (1.34)* 19.73 (1.58)* 
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Fun seeking 12.21 (1.89) 12.53 (2.85) 

 
Drive 10.85 (2.54) 11.33 (2.06) 

 Motion During Scana, m (SD)   

 
Translational mean movement 0.07 (0.06) 0.04 (0.02) 

 
Rotational mean movement 5.7 (5.7) 2.86 (2.86) 

 
Translational RMS 0.04 (.02) 0.04 (.02) 

  Rotational RMS 0.05 (.03) 0.04 (.03) 
*Indicates group comparison is significant at p ≤ .05. Chi-square tests were used for sex, race/ethnicity, income,  
and trauma-type comparisons; two-sample t-tests for age, psychopathology, and motion comparisons.  
aTranslational (x, y, z) movement is reported in mm; rotational, in degrees. Abbreviations: mean, m; Intelligence 
Quotient, IQ; Screen for Child Anxiety Related Emotional Disorders, SCR; Children’s Depression Inventory, CDI;  
Behavioral Activation Subscale of the BIS/BAS scales, BAS; root-mean-square head movement, RMS.  

 

Three validated self-report measures of symptoms and affective traits were administered: 

(1) the 41-item Screen for Child Anxiety-Related Emotional Disorders (SCR; Birmaher et al., 

1997), (2) the 10-item Children’s Depression Inventory (CDI; Kovacs, 1985), and (3) the 

Behavioral Inhibition and Activation Scales (BIS/BAS; Carver and White, 1994). Following 

prior work (Garner et al., 2012), RS was conceptualized as the BAS component of the BIS/BAS. 

The BAS is comprised of three subscales: drive, fun seeking, and reward responsiveness. These 

subscales are intercorrelated (r’s > 0.3, p’s ≤ 0.05 in the present sample), but relate to discrete 

aspects of reward behavior. BASdrive captures the strength with which reward outcome guides 

subsequent behavior, and has been used as a measure of trait reward-seeking (Hickey et al., 

2010). BASfun seeking is akin to trait novelty-seeking, whereas reward responsiveness (BASrr) 

indexes the degree to which a person derives pleasure from reward. We tested each of the BAS 

subdimensions, as well as a combination of the three (Garner et al., 2012) using z-scores to form 

an overall index of RS. A visual analog scale (VAS) was used to obtain an average rating of 

fear/anxiety during the MRI visit (repeat measures at 30-minute intervals) as previously 

described (Thomason et al., 2013).  
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4.2.3 Experimental Paradigm 

The task consisted of 163 presentations of happy or fearful facial expression photographs, 

overlaid with the words “FEAR” or “HAPPY” to create emotionally congruent and incongruent 

stimuli (see Figure 8). Participants were instructed to indicate the facial affect with a button press 

response, while trying to ignore the task-irrelevant word stimuli. Stimuli were presented for 

1,000 ms, with a varying interstimulus interval of 2,000-4,000 ms (mean = 3,000 ms), in a 

pseudorandom order, counterbalanced across trial types for expression, word, response button, 

and gender. Participants were given a practice task before entering the scanner. Stimuli were 

presented with EPrime software v.2.0 (Psychology Software Tools, Inc., Pittsburgh, PA) during 

fMRI scanning and displayed on a back-projection screen that was viewed by the participants via 

a mirror attached to the head coil. Task duration was 12:46. 

 

 
Figure 8. Emotional conflict task. Participants were instructed to identify the underlying facial 
emotion (fearful or happy) while ignoring an overlying emotion word (‘FEAR’ or ‘HAPPY’). 
Trials varied such that emotional distracter words either matched [“congruent”, (C)] or conflicted 
[“incongruent”, (I)] with the underlying facial expression. Conflict interference was assessed by 
contrasting incongruent trials with congruent trials. Conflict regulation was isolated by 
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contrasting postincongruent incongruent (iI) with postcongruent incongruent (cI) trials. The task 
was adapted for children by utilizing an established set of child emotion-face stimuli of varied 
ethnicities, ages 10-17 (Egger et al., 2011). Importantly, the stimuli used matched the 
demographics of our study sample and minimized complex relations inherent in adult face 
stimuli (Marusak et al., 2013). 

 

 4.2.4 Behavioral Analysis 

Accuracy and RT (correct trials) were analyzed in IBM SPSS v.22. Behavioral effects 

were considered significant at a p ≤ 0.05 (two-tailed) threshold.  

 4.2.5 Imaging Data Acquisition 

Functional images were acquired using a 3 Tesla Siemens Verio scanner equipped with a 

12-channel head coil (MRI Research Center, Wayne State University). Twenty-nine axial slices 

were acquired across the whole brain using T2*-weighted echo-planar imaging (TR: 2000 ms, 

TE: 25 ms, matrix: 220 × 220, flip angle: 90°, voxel size: 3.44 × 3.44 × 4 mm). High-resolution 

anatomical images were acquired for individuals using a T1-weighted 3D MP-RAGE sequence 

(TR: 1680 ms, TE: 3.51 ms, orientation: axial, matrix: 384 × 384, 176 slices, flip angle: 9°, voxel 

size: 0.7 × 0.7 × 1.3 mm). 

 4.2.6 Movement during the Scan 

During acquisition, Siemens MRI motion correction (MoCo) software was used to 

retrospectively measure 6 parameters of rigid-body translation and rotation for each time frame 

and produce a corrected time series using affine transformation. Following exclusion of high 

movement participants, movement fell within accepted standards (e.g., < 1.5 mm rms; Fair et al., 

2012; see Table 4).  

 4.2.7 Imaging Data Analysis 

fMRI data were preprocessed using SPM8 software (Statistical Parametric Mapping; 

http://www.fil.ion.ucl.ac.uk/spm/) implemented in MATLAB (MathWorks, Inc., Natick, MA), 
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following procedures described in our prior work (Etkin et al., 2006, Marusak et al., 2013). The 

first four image volumes were excluded from analysis to allow for signal equilibration effects. 

Preprocessing steps included: (i) image realignment, (ii) spatial transformation to the Montreal 

Neurological Institute (MNI) template using the participant-specific transformation parameters 

created by fitting mean functional images to the single reference EPI standard template (in 

SPM). Data were not resampled during normalization, thus retained the native resolution (3.44 x 

3.44 x 4 mm) for subsequent analysis. (iii) Images were then spatially smoothed with a Gaussian 

kernel of 6 mm full width at half maximum.  

A 128-second temporal high-pass filter was applied to the data, and temporal 

autocorrelation was estimated using a first-order autoregressive model. Two independent 

participant-level models were created in the context of a general linear model to examine effects 

of (1) conflict and (2) conflict regulation. In the first model, separate regressors for the stimulus 

events (convolved with a canonical hemodynamic response function) were created for 

incongruent (I) and congruent (C) trials. 82 experimental trials were incongruent, and 81 were 

congruent. For the second model, trial types were broken down based on the preceding trial type: 

regressors were created for postcongruent incongruent trials (cI), postincongruent incongruent 

trials (iI), postcongruent congruent trials (cC), and postincongruent congruent trials (iC). There 

were 38 cI trials, 44 cC trials, 37 iC trials, and 44 iI trials. All participant-level models included 

regressors of no interest corresponding to the six motion parameters, and modeled error and 

posterror trials separately. Participant-level contrasts isolated (1) conflict-related neural activity 

by comparing I-C trials, and (2) conflict regulation by comparing iI-cI trials.  

Group-level random-effects two-sample t-tests were used to test for group differences in 

neural activity during (1) emotional conflict (incongruent minus congruent trials [I-C]), and (2) 
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emotional conflict regulation (post-incongruent incongruent minus post-congruent incongruent 

trials [iI-cI]). The contrast iI-cI isolates activity during conflict trials for which behavior differs 

by virtue only of expectation created by the previous trial type (i.e., previous trial is either 

congruent or incongruent).  

A psychophysiologic interaction analysis (Friston et al., 1997) was conducted to test for 

group differences in amygdala-pgACC FC during conflict regulation. We used a bilateral 

amygdala seed, given that group differences in amygdala activation were observed in both 

hemispheres and because we did not have a priori predictions about laterality. First, the 

deconvolved time course was extracted from bilateral amygdala using a mask defined by FSL 

FIRST subcortical segmentation tool (Patenaude et al., 2011). Then, activity within the amygdala 

was regressed on a voxel-wise basis against the psychological variable of interest (i.e., the 

interaction term), with the physiological (i.e., amygdala time course) and psychological (i.e., iI > 

cI contrast) variables serving as regressors of non-interest. Results were submitted to a random-

effects group analysis using two-sample t-tests. 

Neural results are reported for a priori regions of interest, using small-volume correction, 

p < 0.05, family-wise error-corrected; FWE. Areas examined include: (i) left and right DLPFC 

10 mm spheres (x = -47, y = 21, z = 29; x = 51, y = 21, z = 32); and (ii) pgACC, utilizing the 

anatomically-defined mask described in our prior work (Etkin and Schatzberg, 2011). All 

coordinates are reported in Montreal Neurological Institute (MNI) convention. For regions 

showing group differences, signal was extracted from 4 mm radius spheres (centered on the 

peak) to plot the effects of trauma and to test for associations with behavioral and clinical 

measures. Given that prior research has found trauma-related effects in bilateral amygdala 

(McCrory et al., 2011), left and right amygdala were also evaluated using FSL FIRST masks 
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(Patenaude et al., 2011). Signal change values were submitted to statistical analyses in SPSS and 

effects were considered significant at a threshold of p ≤ 0.05 (two-tailed). We also report results 

from whole-brain voxelwise analyses at a threshold of p < 0.005, cluster minimum = 10 voxels. 

This threshold was derived from suggested standards for whole-brain comparisons (Lieberman 

and Cunningham, 2009) 

 4.2.8 Mediation Analysis 

PROCESS software (v.2.11; Hayes, 2013) implemented in SPSS was used to test for the 

mediating effects of brain function in the association between trauma exposure and 

symptoms/affective traits. Indirect effects are considered significant when confidence intervals 

do not overlap zero (Hayes, 2013).  

4.3 Results 

Trauma and comparison groups were well matched on age, sex, IQ, race, pubertal 

maturation, annual household income, and movement during the scan (Table 4). One subject was 

left-handed. Notably, trauma-exposed youth reported lower levels of reward responsiveness 

(BASrr), but did not differ on anxiety or depressive symptoms (see Table 4). VAS scores did not 

differ between groups, t(28) = 0.314, p = 0.76, suggesting that effects reported are not likely 

influenced by group differences in state fear/anxiety. 

 4.3.1 Behavior  

Overall task performance: Groups did not differ on overall task accuracy, t(30) = 1.24, p 

= 0.22, or RT, t(22.69) = 1.99, p = 0.06 (Figure 9A), but a trend in group differences was 

observed such that trauma participants tended to respond faster than the comparison group. 
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Figure 9. Lower emotion conflict regulatory ability in trauma-exposed youth. (A) No group 
differences were observed in overall accuracy (left) or reaction time (RT; right). (B) Trauma-
exposed youth showed lower ability to regulate emotional conflict. Left: positive values indicate 
a gain in performance for iI relative to cI trials (iI-cI), Right: negative values indicate faster 
response for iI relative to cI trials (iI-cI). *p ≤ 0.05, two-sample t-test. Error bars represent 
standard error of the mean.  

 

Effects of task congruency: As expected, emotional conflict (I-C) induced a slowdown in 

RT and a reduction in accuracy across the sample, p’s < 0.001 (see Table 5). Groups did not 

differ on conflict interference (I-C; accuracy: t(30) = 0.9, p = 0.37; RT: t(30) = 1.77, p = 0.086).  

Table 5. Behavioral effects of task congruency 
 

 
ACC (%) RT (ms) 

Trial type M SD M SD 
Congruent (C)  86.91 10.63 859.39 171.18 
Incongruent (I) 77.99 15.09 898.19 186.96 
Abbreviations: ACC, accuracy; RT, reaction time; mean, M; standard deviation, SD.  

 

Conflict regulation effects: In the comparison group, participants made ~7% fewer errors 

and improved RT by ~20 ms for repeat conflict trials, a pattern that is consistent with adaptive 

response to conflict and improved performance. In contrast, trauma participants did not show this 



www.manaraa.com

79 

 

adaptive gain in performance across repeat interference trials. Trauma participants showed no 

gain in accuracy; in fact they showed a ~35 ms reaction time performance decrement when iI 

trials were compared to cI trials. Furthermore, adaptation differences between groups were 

significant for both accuracy, t(30) = 2.08, p = 0.046, and RT, t(27.25) = 2.04, p = 0.046 (see 

Figure 9B). We discovered no evidence indicating that group differences in conflict regulation 

were moderated by pubertal maturation (accuracy: F(1, 28) = 0.24, p = 0.63; RT: F(1,28) = 0.33, 

p = 0.57).  

 4.3.2 Aberrant Conflict-Related Amygdala Activity in Trauma-Exposed Youth 

Amygdala a priori region of interest analysis revealed greater conflict-related activity (I-

C) in right, t(28) = 2.11, p = 0.04, Cohen’s d = 0.79, and left, t(28) = 2.23, p = 0.03, Cohen’s d = 

0.84, amygdala in trauma-exposed relative to comparison participants (Figure 10A-C). There 

were no trauma-by-puberty interactions for left (F(1, 26) = 0.22, p = 0.65) or right (F(1, 26) = 

1.83, p = 0.19) amygdala responses to conflict. No group differences in amygdala activity were 

observed during conflict regulation (iI-cI).  
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Figure 10. Greater amygdala response to emotional conflict in trauma-exposed youth. 
Greater conflict-related (I-C) bilateral amygdala activity was observed in trauma relative to 
comparison participants. Results are displayed for the whole brain at p < 0.05 uncorrected (A). 
The anatomically-defined amygdala region from which average signal was extracted (B) to 
provide group differences shown in (C). *p ≤ 0.05 two-sample t-test. Higher conflict-related 
amygdala reactivity across the sample mediated the association between trauma exposure and 
diminished reward sensitivity (D). Error bars represent standard error of the mean. 
 
 
 4.3.3 Trauma-Exposed Youth Show Abnormal Regulation of the Dorsolateral Prefrontal 

Cortex  

We observed significant small volume-corrected group differences in the left DLPFC 

during emotional conflict regulation (x = -46, y = 30, z = 38, pFWE = 0.027, Z = 3.10). Relative 

to comparison youth, trauma participants displayed elevated left DLPFC activity (Figure 11A). 

Failure of trauma participants to dampen DLPFC activity in iI trials paralleled their inability to 

improve accuracy and RT during these trials (see Figure 9B,C) and this association was 

significant: among trauma-exposed youth, higher DLFPC activity during emotional conflict 

regulation correlated with reduced ability to improve accuracy during iI relative to cI trials, r(14) 

= -0.585, p = 0.028. Considerate of possible pubertal effects we evaluated the trauma-by-puberty 
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interaction for left DLPFC response during conflict regulation; the result was non-significant, 

F(1, 26) = 1.4, p = 0.24. No differences in pgACC activity were observed between groups.  

 
Figure 11. Abnormal regulation of the dorsolateral prefrontal cortex (DLPFC) and 
disrupted amygdala-pregenual cingulate (pgACC) connectivity in trauma-exposed youth. 
Increase in DLPFC response is observed in trauma participants (A) and this is accompanied by 
reduced ability to improve behavioral performance during repeat conflict trials (iI-cI; see 
Fig.9B). Psychophysiologic interaction functional connectivity analysis showed that only 
comparison participants showed robust negative connectivity between the amygdala and pgACC 
during emotional conflict regulation (B). Reduced regulatory connectivity was associated with 
lower ability of trauma participants to improve reaction time during iI relative to cI trials (iI-cI; 
see Fig.9B). Whole-brain effects displayed at p < 0.01 uncorrected.   

 

 4.3.4 Absent Amygdala-Pregenual Cingulate Connectivity in Trauma-Exposed Youth 

We observed a significant group difference in amygdala connectivity with the pgACC (x 

= 6, y = 28, z = -4, pFWE = 0.016, Z = 3.64) during emotional conflict regulation (iI-cI; see 

Figure 11B). Extraction of average connectivity strength within this cluster revealed that the 

group effect resulted from the predicted negative amygdala-pgACC connectivity in comparison 

participants during conflict regulation, which was absent in trauma-exposed youth. Moreover, 

less negative amygdala-pgACC FC was associated with reduced ability to improve RT for iI 



www.manaraa.com

82 

 

relative to cI trials, r(30) = 0.406, p  = 0.026. The effect of trauma exposure on amygdala-

pgACC connectivity was not moderated by pubertal maturation, F(1, 26) = 3.58, p = 0.07.  

 4.3.5 Altered Neural Activity Mediates the Relation Between Trauma Exposure and 

Deficits in Reward Sensitivity  

We evaluated whether neural responsivity and trait RS were correlated within brain 

regions in which neural function differed between groups (i.e., amygdala, DLPFC, pgACC). We 

observed significant negative correlations between RS and conflict-related activity in the left, 

r(29) = -0.38, p = 0.04 and right amygdala, r(29) = -0.43, p = 0.02 (Figure 10D). That is, 

participants with low levels of RS had higher levels of amygdala response to emotional conflict. 

These effects were driven by variation in the BASrr subscale (left amygdala: r(29) = -0.64, p < 

0.001; right amygdala: r(29) = -0.58, p < 0.001), and held when controlling for anxiety and 

depression symptoms. RS was not correlated with DLPFC activity or amygdala-pgACC 

connectivity during emotional conflict regulation, p’s > 0.1.  

We conducted mediation analyses to determine whether conflict-related amygdala 

reactivity statistically mediated the relationship between trauma-exposure and individual 

variation in trait RS. A mediation relationship (indirect effects) existed for both the left (β = 0.08, 

SE = 0.15, LLCI [lower limit confidence interval] = 0.001, ULCI [upper limit confidence 

interval] = 0.64) and right amygdala (β = 0.23, SE = 0.13, LLCI = 0.02, UCLI = 0.56). Direct 

effects of trauma on RS were not significant, suggesting that amygdala reactivity fully mediated 

the pathway between trauma exposure and variation in RS. Reversal of this model (trauma 

exposureàRSàamygdala response) yielded nonsignificant indirect effects (right amygdala: 

LLCI = -0.03, ULCI = 0.35; left amygdala: LLC: = -0.03, ULCI = 0.28), implying that altered 

neural response mediates RS but not the reverse. 
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 4.3.6 Exploratory Whole-Brain Results 

 Results of whole-brain analyses are provided in Table S2 (see the data supplement3). 

Briefly, trauma-exposed showed higher activation to conflict (I-C) than comparison youth in 

regions of the DLPFC, cerebellum, midbrain, primary and secondary visual areas, cuneus, and 

precentral gyrus. Trauma-exposed youth also showed higher response during conflict regulation 

(iI-cI) in primary and secondary visual areas, middle frontal gyrus, precentral gyrus, and 

preceneus. There were no regions with higher activation to conflict or conflict regulation in 

comparison youth than in trauma-exposed youth at a p < 0.005, 10 voxel minimum threshold.  

4.4 Discussion 

 While research in adults has illuminated lasting neurobiological consequences and 

deficits in emotion regulation associated with childhood trauma, it is unknown if neural changes 

are evident in childhood and adolescence, which may serve as a prelude into emotion problems 

observed in adulthood. The present study tested the hypothesis that childhood trauma exposure 

alters neural and behavioral systems for detecting and regulating emotional conflict in formative, 

developmental years. We employed an emotional conflict paradigm in which emotional 

processing is regulated automatically, and adapted this task for children (see Figure 8). Three 

main findings emerged. First, compared to their unexposed counterparts, youth with histories of 

trauma showed greater amygdala reactivity to emotional conflict. Second, trauma-exposed 

children and adolescents were unable to regulate emotional conflict, indexed by a lack of 

improvement in accuracy and RT to repeat emotionally incongruent trials. This behavioral deficit 

was accompanied with a failure to regulate the DLPFC, and an absence of negative regulation-

related amygdala-pgACC connectivity in trauma-exposed youth. Third, we found evidence for 

																																																								
3http://www.nature.com.proxy.lib.wayne.edu/npp/journal/v40/n5/suppinfo/npp2014311s1.html	
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trait-brain associations: conflict-related amygdala reactivity was associated with diminished 

levels of RS.  

Engagement of the amygdala is thought to confer preferential processing to emotional 

stimuli (Vuilleumier et al., 2001) so that potential threats can be rapidly detected and evaluated 

(LeDoux, 1996). Given this role, heightened amygdala reactivity to emotional conflict observed 

in trauma-exposed youth may reflect alterations in the neural systems that monitor the 

environment for biologically salient information. There is substantial evidence that amygdala 

reactivity is under inhibitory control of medial prefrontal regions (Ochsner and Gross, 2005), 

particularly pgACC (Maier and di Pellegrino, 2012). Our results indicate that this mechanism is 

disrupted in children with early life trauma, evidenced by (1) reduced ability to regulate 

emotional conflict, (2) exaggerated amygdala response to conflict, and (3) absence of effective 

inhibitory control (i.e., amygdala-pgACC connectivity). While we did not observe group 

differences in pgACC activation during conflict regulation as previously reported in adults with 

anxiety disorders (Etkin et al., 2010), we did replicate the finding of lower negative functional 

connectivity between amygdala and pgACC. It is possible that altered pgACC regional responses 

observed during adulthood result from presence of psychiatric disorder, or compensation 

resulting from earlier emerging disruptions in amygdala-pgACC circuitry. We recently reported 

that resting intrinsic connectivity of the amygdala-pgACC regulatory pathway is altered in youth 

with histories of trauma (Thomason et al., In Press), suggesting that these deficits are pervasive 

and are detected even when the individual is not engaging emotion regulatory processes. Similar 

deficits in top-down control are observed in adults with high levels of trait anxiety (Hare et al., 

2008), generalized anxiety disorder (Etkin et al., 2010), and major depressive disorder (Etkin and 

Schatzberg, 2011). As trauma-exposed youth in the present study were unable to automatically 
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regulate emotional processing, it is possible that children’s early experiences may alter 

attentional thresholds (indexed by amygdala reactivity) in ways that undermine effective emotion 

regulation (see review by; Pollak, 2008). Notably, group differences in amygdala response to 

conflict occurred in the absence of differences in behavioral interference, suggesting that 

elevated amygdala reactivity represents a latent neural mechanism that enhances the processing 

of emotional information.   

 Prior work in healthy adults emphasizes that the DLPFC is online during conflict 

detection, and is then dampened during resolution (Etkin et al., 2006). DLPFC activity during 

conflict resolution in trauma-exposed but not comparison youth suggests aberrant engagement of 

attentional control. Moreover, persistent activation of the DLPFC in trauma participants 

correlated with observed behavioral deficits, i.e., reduced ability to regulate emotional conflict. It 

is notable that, similar to trauma-exposed youth in the present study, adults with major 

depression show increased DLPFC activity during emotional conflict regulation, and an absence 

of amygdala-pgACC inhibitory control in the same task used here (Etkin and Schatzberg, 2011). 

However, unlike trauma-exposed youth, depressed adults were not impaired in their ability to 

behaviorally regulate emotional conflict. In contrast to our findings, DLPFC activity correlated 

with better emotion regulatory ability, suggesting that DLPFC recruitment in depressed adults 

reflects effortful control in support of emotional conflict regulation (Etkin and Schatzberg, 

2011). Altogether, our results suggest that dysfunction of the DLPFC observed in trauma-

exposed youth may interfere with resolution of emotional conflict, and/or represent inefficient 

neural resources recruited in an effort to overcome this deficit.   

A wealth of research shows that early life adversity is one of the strongest predictors of 

psychopathology (Gilbert et al., 2009). While trauma-exposed youth did not show higher levels 
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of anxiety or depression, they reported experiencing decreased positive affect in response to 

rewarding stimuli (i.e., lower levels of BASrr). This is striking given that diminished RS is 

emerging as a promising trait marker of disease susceptibility (Bogdan and Pizzagalli, 2006) and 

severity (Kasch et al., 2002). Deficits in reward processing are particularly relevant for the onset 

of psychopathology in youth, predicting increases in depressive symptoms (Morgan et al., 2013) 

and poorer response to evidence-based treatments during adolescence (McMakin et al., 2012). 

Moreover, changes in reward processing are thought to contribute to key affective and 

motivational features of anhedonia (Treadway and Zald, 2011). 

Our results demonstrate novel associations between early life trauma, deficits in emotion 

regulation, and variation in RS during formative years. Specifically, trauma in early life predicts 

reduced RS through altered function of the neural systems that process emotion. This is in line 

with a growing body of literature linking early life stress to reward processing dysfunction 

(Bogdan et al., 2013). Lack of positive engagement during childhood and adolescence may 

contribute to a loss of the normal protection or resilience against traumatic stress. Highlighting 

the specificity of this effect, no relationships were observed for anxiety or depression, and RS 

effects held when controlling for these variables.   

Study limitations are important to note. First, we tested the effects of trauma in an urban, 

low-income sample that is predominantly female and African American. One must therefore be 

cautious when generalizing these effects. Second, sample size was limited, and replication in 

larger samples is warranted. Third, a high number of participants were excluded due to excess 

motion and/or low task performance. While this is a situation common in pediatric studies, future 

studies examining conflict interference in youth should consider shortening the task length, 

introducing more breaks, or having a researcher remain in the room with the participant to ensure 
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task compliance and remind them to be still. Fourth, this was a cross-sectional study, and thus it 

is not possible to determine how variation in neural and behavioral responses during conflict 

regulation impact long-term outcomes. Longitudinal evaluation will be necessary to determine 

how specific observations herein relate to vulnerability or resilience to trauma in early life.  

In summary, we demonstrate trauma-related perturbations in the neural and behavioral 

systems that underlie emotional conflict regulation in childhood/adolescence. Trauma-exposed 

youth showed greater amygdala response to emotional conflict, reduced ability to regulate 

emotional conflict, failure to engage amygdala-pgACC regulatory circuitry, and ineffective 

DLPFC engagement. These findings imply a simultaneous heightened sensitivity to conflicting 

emotional information and a lack of regulatory control over emotion processing in youth who 

have experienced trauma. This “double hit” is likely to limit the ability of the child to master 

age-appropriate skills in social and academic domains. We speculate that attentional biases and 

emotion regulation difficulties may confer elevated risk for psychopathology in youth exposed to 

trauma. Here, trauma-related changes were detected in systems responsible for the automatic 

regulation of emotion, in line with emerging evidence that the root of emotion regulatory 

difficulties in psychopathology might be in more spontaneous forms of emotion regulation (Etkin 

et al., 2010). Our results show trauma-related changes in neural systems that regulate emotional 

conflict in youth, offering a potential target for interventions.  
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CHAPTER 5: CHANGES IN CONNECTOME-LEVEL BRAIN ORGANIZATION AND 
CONFLICT INTERFERENCE IN YOUTH EXPOSED TO TRAUMA 

 
5.1 Introduction 

Information about the wforld is funneled into our brain through sensory organs. Various 

inputs compete for our attention, and we prioritize and weight these inputs in favor of those most 

relevant to our goals. The process by which we select amongst competing stimuli is rapid and 

predominately automatic. Current neurobiological models hold that aberrant filtering, detection, 

and mapping of salient external stimuli or internal mental events plays a significant role in 

psychopathology (Menon, 2011). According to these models, increased bottom-up detection of 

salient events impairs the ability to recruit higher-order brain systems mediating attention and 

cognitive control. Elevated interference by inappropriately assigned salient information may 

underlie cognitive dysfunction and emotion regulatory deficits hallmark of several psychiatric 

disorders.  

Childhood trauma exposure is a critical and significant risk factor, associated with ~50% 

of childhood psychiatric disorders and ~30% of later-onset clinical disorders (Green et al., 2010). 

A growing body of evidence indicates that disruptions in cognitive processes and their associated 

neural underpinnings may contribute to the elevated risk in these individuals. These studies show 

altered perceptual sensitivity and attention control (review by Pollak, 2008), and potentiated 

neural responses to salient stimuli in individuals who have experienced early adversity or trauma 

(McCrory et al., 2011, Dannlowski et al., 2012, Herringa et al., 2013b). Hyperactivity of brain 

regions that detect and enhance biologically-relevant information, such as the amygdala, fronto-

insular cortex (comprising the anterior insula and ventrolateral prefrontal cortex), and dorsal 

anterior cingulate cortex (dACC), are consistently reported findings. Activity in these regions 

correlates with emotional arousal (Taylor et al., 2003), autonomic activity (Critchley, 2005), and 



www.manaraa.com

89 

 

anticipation of aversive events (Kalisch et al., 2005). Notably, these regions are key nodes of the 

salience network (SN), an intrinsic connectivity network involved in detecting, integrating, and 

filtering relevant interoceptive, autonomic, and emotional information (Seeley et al., 2007, 

Taylor et al., 2009). Prior studies also demonstrate that activity and connectivity within the SN is 

elevated in adults with major depressive disorder (Hamilton et al., 2012, Manoliu et al., 2013), 

PTSD (Sripada et al., 2012), and anxiety disorders (Etkin and Wager, 2007). It has been 

postulated that aberrant function and interaction of the SN may contribute to negative biases in 

attention and thought inherent in these disorders (Etkin and Wager, 2007, Hamilton et al., 2012). 

It is possible that functional changes in the SN are a consequence of childhood trauma that also 

serves to increase psychiatric risk.  

Neurobiological investigations have yet to provide clarity regarding functional brain 

changes that link the experience of childhood trauma with the development of psychopathology. 

First, the majority of neuroimaging studies are conducted in adults with histories of childhood 

trauma. Effects observed in adults may reflect secondary compensatory mechanisms rather than 

those primarily associated with trauma. Evaluation of childhood and adolescence, periods 

proximal to the time of the traumatic experience, may inform understanding of early emergence 

of neurological traits that are precursors to mental illness. Recent pediatric research has begun to 

address this gap, revealing heightened sensitivity of SN regions to emotional stimuli in youth 

who have experienced early adversity or trauma (Maheu et al., 2010, McCrory et al., 2011, 

Tottenham et al., 2011, White et al., 2012). To our knowledge, SN engagement during 

interference processing has yet to be examined in a high-risk developmental trauma framework. 

Second, because most either lack behavioral measures or find no differences in behavior, 

changes in brain activation may reflect core deficits, compensation, or both. In addition, few 
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studies link neural changes to psychiatric symptoms, and even fewer examine specific symptom 

dimensions (e.g., reward sensitivity) which may show greater correspondence with 

neurobiological variation (Morris and Cuthbert, 2012). Third, we are aware of no pediatric 

studies that examine the impact of childhood trauma on resting-state functional connectivity of 

the SN.  

Based on prior findings of altered perceptual sensitivity and attention control and 

heightened neural responses to salient stimuli in adults that experience early trauma, we test the 

hypothesis that salience processing and functional organization of the SN becomes disrupted in 

youth - proximal to the traumatic experience. An overactive SN alerting system may contribute 

to cognitive and socioemotional deficits observed in individuals who have experienced trauma in 

early life. Tasks that create conflict (i.e., tension between two competing stimuli) provide a 

reliable behavioral metric of the ability to detect and filter extraneous stimuli, and the degree to 

which conflicting information interferes with ongoing cognitive processing. Evaluation of 

neurocognitive function during conflict allows us to measure engagement of SN regions and the 

relevance of neural changes for behavior. A prior study in women with PTSD (related to 

interpersonal trauma) found higher responses to interference in the insula, supporting the notion 

of increased salience detection in the SN in those who have experienced trauma and/or secondary 

disease symptomology (Bruce et al., 2012). While the amygdala is traditionally thought of in the 

context of emotional conflict, research shows that core SN regions, including the dACC and 

fronto-insular cortex, track conflict more broadly (Egner et al., 2008, Aupperle et al., 2014). 

The fronto-insular cortex (FIC) is considered an integral hub of the brain, regulating 

information flow across other large-scale brain networks involved in attentional processing and 

cognitive control (Sridharan et al., 2008). Research shows that the right FIC (rFIC), in particular, 
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mediates switching between self-directed (e.g., default mode network) and executive control 

networks (Sridharan et al., 2008), and that this switch has relevance for mental health (Hamilton 

et al., 2011). The FIC contains a specialized class of neurons with large axons that facilitate rapid 

relay of control signals to other cortical regions (Cauda et al., 2014), and is thus well suited to 

initiate control signals. Developmental research shows that the FIC is one of the earliest 

developing structures in the prenatal period (Afif et al., 2007), and its role as a integral hub of the 

brain is established within the first years of life (Fransson et al., 2011, Gao et al., 2011). 

Although the critical role of this structure is evident in early life, there is evidence that large-

scale functional brain connectivity continues to undergo significant restructuring throughout 

childhood (Menon, 2013). The FIC, in particular, shows weak within- and between-network 

functional connectivity in childhood (Uddin et al., 2011), highlighting its potential source of 

vulnerability for developmental psychopathology.  

The FIC is also an important site of convergence for salient proprioceptive, interoceptive, 

emotional, cognitive, homeostatic and environmental inputs. Information originating from 

sensory perceptive regions is received by the amygdala and FIC, extending into mid-posterior 

insular regions (Cauda et al., 2014). The amygdala and mid-posterior insula are considered part 

of the extended SN, given evidence from both human neuroimaging (Seeley et al., 2007, Taylor 

et al., 2009) and primate tract tracing (Mesulam and Mufson, 1982) literatures. Although 

salience filtering likely occurs at multiple levels of processing, current theory holds that the SN 

(and the rFIC in particular), triggers a cascade of cognitive control signals, impacting how 

stimuli are subsequently processed (Menon and Uddin, 2010). This unique role underscores the 

potential for profound disruptions in cognitive and affective functioning should insular function 

or connectivity be altered.  
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Here, we describe research that examined the impact of childhood trauma on connectivity 

within the SN during rest and neurocognitive function during a face-categorization conflict task. 

We hypothesized that youth exposed to trauma would show greater behavioral decrements to 

conflicting stimuli (i.e., higher conflict interference), increased response to conflict in SN brain 

regions, and increased connectivity within the SN. While we focus on function and connectivity 

within the SN, we also tested for altered connectivity between the SN and the default mode 

network (DMN), given the SN’s critical role in initiating network switching and prior research 

showing changes in SN-DMN connectivity in adults with MDD (Manoliu et al., 2013) and PTSD 

(Sripada et al., 2012). Finally, we evaluated the correspondence between observed variation in 

the developing connectome and individual variation in positive and negative valence systems. 

These dispositions are relevant for psychopathology (as outlined by the Research Domain 

Critiera initiative; Morris and Cuthbert, 2012) and offer insight into the manner of differences 

observed between groups, aiding interpretation of neural effects as risk or adaptation factors. A 

self-report measure of trait RS was used to assess the positive valence systems, while validated 

anxiety and depressive symptom measures were used to assess negative valence systems. 

5.2 Methods 

 5.2.1 Participants 

A total of 51 youth, recruited locally through advertisements or child psychiatry clinics 

(Detroit, Michigan), participated in this fMRI study. Exclusionary criteria included: English as a 

second language, lower than a 2nd grade reading level, history of brain injury, neurological or 

movement disorders, or presence of MRI contraindications. Parental informed written consent 

and child/adolescent assent were obtained prior to participation. The Human Investigation 

Committee of Wayne State University approved the study protocol.  
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Both trauma and comparison participants were recruited based on high sociodemographic 

risk. Prior research shows that trauma frequency is extreme among African Americans living in 

impoverished areas (nearly 90%; Gillespie et al., 2009). Moreover, minority, urban residents are 

nearly two times more likely to develop emotional psychopathology following trauma exposure 

(Kessler et al., 1995, Gillespie et al., 2009, Goldmann et al., 2011). Despite this population’s 

apparent increased susceptibility to mental illness following trauma, little research has examined 

trauma and its neural correlates in high-risk, urban residents.  

IQ was evaluated using the Kaufman Brief Intelligence Test (KBIT v.2; Kaufman and 

Kaufman, 2004a). Pubertal maturation was assessed using Tanner staging (Marshall and Tanner, 

1968). Following prior work (Forbes et al., 2009), participants were categorized as pre/early 

(Tanner stages 1-2) or mid/late pubertal (stages 3-5). Resting-state data from 22 participants have 

been reported previously (Thomason et al., 2013). Face categorization conflict task data 

presented here have never previously been reported, however data from an analogous emotion-

categorization stroop task in 29 participants included here have previously been described 

(Marusak et al., 2014a; tasks counterbalanced for order of presentation). Although we did not 

conduct diagnostic testing or exclude individuals with attention-deficit/hyperactivity disorder 

(ADHD), data from initial study screening noted 3 trauma and 1 comparison participant for 

potential ADHD-like behavior. Two participants were on psychotropic medications: one trauma 

participant was taking atomoxetine and sertraline, and one comparison participant was taking 

trazodone, guanfacine, methylphenidate, sertraline, and clonidine. Follow-up analyses excluding 

the two participants on medications yielded no changes to observed effects.   
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 5.2.2 Trauma and Clinical Measures 

Utilizing parent and youth reports, youth participants who experienced at least one 

trauma indicated on the Children’s Trauma Assessment Center Screen Checklist (source: 

Michigan Trauma Assessment Center) were categorized as ‘trauma’. Number and type of 

endorsed traumas are provided in Table 6. Participants with movement exceeding 4 mm or 3 

rotational degrees (n = 12; 3 trauma, 9 comparison), conflict task accuracy <50% (n = 4; 1 

trauma, 3 comparison), or errors in behavioral data collection (n = 2; 1 trauma, 1 comparison) 

were excluded from analyses. Therefore, all data are reported for 14 trauma-exposed and 19  

age-, sex-, and IQ-matched comparison youth.  

Table 6. Participant demographics by group     

    Trauma 
(n = 14) 

Comparison        
(n = 19) 

 Age, m (SD) 12.61 (2.11) 12.06 (2.66) 
 Sex (female), n (%) 10 (71.4) 15 (78.9) 
 Pubertal development, n (%)   
 Pre/early pubertal (Tanner stages 1-2) 5 (35.71) 8 (42.1) 

 Mid/late pubertal (Tanner stages 3-5) 9 (64.29) 11 (57.9) 
 IQ, m (SD) 100.14 (13.17) 104.29 (14.34) 
 Race/Ethnicity, n (%)   

 
African American 5 (35.71) 9 (47.37) 

 
Caucasian 3 (21.43) 8 (42.11) 

 
Hispanic 2 (14.29) 0 

 
Biracial 1 (7.14) 1 (5.26) 

 
Not reported 3 (21.43) 1 (5.26) 

 Household Annual Income, n (%)   

 
Less than $40,000 10 (71.43) 9 (47.37) 

 
$40-60,000 2 (14.29) 4 (21.05) 

 
$60-80,000 1 (7.14) 3 (15.79) 

 
Over $80,000 0 3 (15.79) 

 
Not reported 1 (7.14) 0 

 Type of Trauma Endorsed, n (%)   

 
Physical abuse 2 (14)* 0* 

 
Neglectful home environment 2 (14)* 0* 

 
Exposure to domestic violence 7 (50)* 0* 

 
Exposure to any other violence not already 7 (50)* 0* 
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identified 

 
Multiple separations from parent or caregiver 2 (14)* 0* 

 
Sexual abuse or exposure 3 (21)* 0* 

 Anxiety Symptomology (SCR), m (SD) 19.38 (13.97) 13.38 (8.94) 
 Depressive Symptomology (CDI), m (SD) 2 (2.56) 2.26 (3.01) 
 Reward Sensitivity (BAS, z-scores), m (SD) -0.2 (0.59) 0.07 (0.94) 

 
Reward responsivitiy 17.21 (1.58) 18 (2.09) 

 
Fun seeking 12.07 (1.9) 12.44 (2.67) 

 
Drive 10.43 (2.47) 11 (2.56) 

 Motion During Cognitive Conflict Taska, m (SD)   

 
Translational mean movement 0.05 (0.03) 0.05(0.03) 

 
Rotational mean movement 3.44 (4.01) 4.01 (5.16) 

 
Translational RMS 0.05 (0.03) 0.05 (0.03) 

 
Rotational RMS 0.06 (0.03) 0.06 (0.04) 

 Translational max excursion 0.47 (0.5) 0.44 (0.26) 

 Rotational max excursion 0.45 (0.36) 0.46 (0.29) 
 Motion During Resting-State Scana, m (SD)   

 
Translational mean movement 0.15 (0.12) 0.18 (0.13) 

 
Rotational mean movement 0.12 (0.12) 0.14 (0.1) 

 
Translational RMS 0.1 (0.06) 0.11 (0.05) 

 
Rotational RMS 0.001 (0.001) 0.001 (0.001) 

 Translational max excursion 0.66 (0.43) 0.85 (0.39) 

 
Rotational max excursion 0.47 (0.31) 0.57 (0.28) 

*Indicates group comparison is significant at p ≤ .05. Chi-square tests were used for sex, race/ethnicity, income, 
 and trauma-type comparisons; two-sample t-tests for age, psychopathology, and motion comparisons;  
 Mann-Whitney U for income. aTranslational (x, y, z) movement is reported in mm; rotational, in degrees.  
Parenthetical values given by totals or means represent percentages and SDs, respectively.  
Abbreviations: standard deviation, SD; mean, m; Intelligence Quotient, IQ; Screen for Child Anxiety Related  
Emotional Disorders, SCR; Children's Depression Inventory, CDI; Behavioral Activation Subscale of the  
BIS/BAS, BAS; root-mean-square (head position change), RMS.  

 

Individual variation in positive and negative valence systems was assessed, as outlined by 

the Research Domain Criteria initiative (Morris and Cuthbert, 2012). Variation in negative 

valence systems were measured using two validated self-report measures of anxiety and 

depressive symptoms: the 41-item Screen for Child Anxiety-Related Emotional Disorders (SCR; 

Birmaher et al., 1997) and the 10-item Children’s Depression Inventory (CDI; Saylor et al., 

1984). The 20-item Behavioral Inhibition and Activation Scales (BIS/BAS; Carver and White, 
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1994) was used to measure variation in positive valence systems. Trait RS was conceptualized as 

the Behavioral Activation (BAS) component of the BIS/BAS, following prior work (Garner et 

al., 2012, Marusak et al., 2014a). Scores for each of the three BAS subscales (representing 

different aspects of reward function: reward responsiveness, fun seeking, drive) were converted 

to z-scores and averaged to form RS, an overall index of reward function. RS data were not 

available for one comparison participant. A visual analog scale (VAS) was used to obtain an 

average rating of fear/anxiety during the MRI visit (repeat measures at 30-minute intervals) as 

previously described (Thomason et al., 2013). 

 5.2.3 Imaging Data Acquisition 

 BOLD fMRI data were obtained using a 3 Tesla Siemens Verio scanner equipped with a 

12-channel head coil (MRI Research Center, Wayne State University). Conflict task and resting-

state scans utilized the same acquisition parameters. Both used T2*-weighted echo-planar 

imaging with TR: 2000 ms, TE: 25 ms, matrix: 220 × 220, flip angle: 90°, voxel size: 3.44 × 3.44 

× 4 mm, and acquired twenty-nine axial slices. High-resolution anatomical images were acquired 

using a T1-weighted 3D MP-RAGE sequence with TR: 1680 ms, TE: 3.51 ms, orientation: axial, 

matrix: 384 × 384, 176 slices, flip angle: 90°, voxel size: 0.7 × 0.7 × 1.3 mm. 

 5.2.4 Participant Head Motion 

Motion poses a significant challenge for fMRI research (Power et al., 2012). The 

following three steps were taken to address motion-related artifacts. (1) High-movement resting-

state frames (exceeding 3.3 mm or 2.2 rotational degrees) were removed using ArtRepair 

software (http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html). This 

threshold resulted in the removal of no more than 10% of frames (i.e., <18 out of 180) per 

participant. (2) Average movement across the scan, root-mean-square (rms) head position 
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change, and maximum excursion (frame-to-frame displacement) were calculated and averaged 

for translational (x, y, z) and rotational (roll, pitch, yaw) movement directions. Participants with 

excess movement were excluded from the study sample.  

For remaining participants, motion was well within accepted standards (< 1.5 mm rms; 

Fair et al., 2012). Motion parameters were compared between groups using 2-tailed independent 

samples t-tests for both fMRI experiments. (3) Motion-related signal (6 realignment parameters 

with another 6 parameters representing their first order temporal derivatives) was removed with 

covariate regression analysis before computing SN and DMN connectivity. Signals from white 

matter and cerebral spinal fluid were also regressed out using anatomical component correction 

(aCompCor; Behzadi et al., 2007, Chai et al., 2012). 

 5.2.4 Experimental Paradigms and Procedures 

5.2.4.1 Conflict task: During fMRI, participants underwent a face categorization conflict 

task adapted from Egner et al. (2008).The task consisted of 163 presentations of happy or fearful 

facial expression photographs, overlaid with the words “FEMALE” or “MALE” to create 

categorically congruent and incongruent stimuli (see Figure 12A). Participants were instructed to 

identify the gender of the face stimuli with a button press response, while trying to ignore the 

task-irrelevant gender word stimuli. Stimuli were presented for 1,000 ms, with a varying 

interstimulus interval of 2,000-4,000 ms (mean = 3,000 ms), in a pseudorandom order, 

counterbalanced across trial types for expression, word, response button, and gender. The 

original task (Egner et al., 2008) utilized adult face stimuli. Here, we adapted the task for 

children by utilizing an established set of child and adolescent face stimuli (Egger et al., 2011), 

minimizing the complex relations inherent in adult face stimuli (Marusak et al., 2013). Stimuli 

were presented with EPrime software v.2.0 (Psychology Software Tools, Inc., Pittsburgh, PA) 
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during fMRI scanning and displayed on a back-projection screen that was viewed by the 

participants via a mirror attached to the head coil. Task duration was 12:46. Participants with 

poor task performance (<50% accuracy) or errors in behavioral data collection were not included 

in the study sample. For remaining participants, task accuracy was fair (mean = 86.4%, SD = 

9.92%). Reaction time (RT) was unavailable for one participant due to errors in data collection, 

and this participant was therefore not included in RT analyses but was retained in all other 

analyses for completeness. 

 

 
Figure 12. (A) Face categorization conflict task and (B) group differences in conflict 
interference. Participants were instructed to identify the underlying face gender (male or 
female) while ignoring an overlying gender word (‘MALE’ or ‘FEMALE’). Trials varied such 
that distracter words either matched (“congruent”) or conflicted (“incongruent”) with the 
underlying face. Trauma-exposed youth show a greater loss of accuracy for incongruent relative 
to congruent trials (I-C). Negative values indicate a loss in performance. ***p < 0.001, two-
sample t-test. Error bars represent standard error. 
 
 

5.2.4.2 Resting-state paradigm: Following the conflict task, participants underwent a 6-

minute resting-state paradigm. Participants were asked to lie quietly in the scanner with their 

eyes closed for the duration of the scan.  

 5.2.5 Imaging Data Analysis 
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5.2.5.1 Preprocessing: BOLD fMRI data were processed using SPM8 software 

(Statistical Parametric Mapping; http://www.fil.ion.ucl.ac.uk/spm/) implemented in MATLAB 

(MathWorks, Inc., Natick, MA). The first four image volumes were excluded to allow for signal 

equilibration effects. Preprocessing steps included: (i) slice-time correction, (ii) image 

realignment, (iii) spatial transformation to the Montreal Neurological Institute (MNI) template 

using the participant-specific transformation parameters created by fitting mean functional 

images to the single reference EPI standard template (in SPM). Data were not resampled during 

normalization, thus retained the native resolution (3.44 x 3.44 x 4 mm) for subsequent analysis. 

(iv) Images were then spatially smoothed with a Gaussian kernel (6 mm full width at half 

maximum [FWHM] for task data; 8 mm FWHM for resting-state data).   

 5.2.5.2 Conflict task: A 128-second temporal high-pass filter was applied to the data, and 

temporal autocorrelation was estimated using a first-order autoregressive model. Two 

independent participant-level models were created in the context of a general linear model to 

examine effects of (1) conflict and (2) conflict regulation. In the first model, separate regressors 

for the stimulus events (convolved with a canonical hemodynamic response function) were 

created for incongruent (I) and congruent (C) trials. For the second model, trial types were 

broken down based on the preceding trial type: regressors were created for postcongruent 

incongruent trials (cI), postincongruent incongruent trials (iI), postcongruent congruent trials 

(cC), and postincongruent congruent trials (iC). All participant-level models included regressors 

of no interest corresponding to the six motion parameters, and modeled error and posterror trials 

separately. Participant-level contrasts isolated (1) conflict-related neural activity by subtracting 

congruent from incongruent trials (I-C), and (2) conflict regulation by subtracting post-congruent 

incongruent trials from post-incongruent incongruent trials (iI-cI). The contrast iI-cI isolates 
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activity during conflict trials for which behavior differs by virtue only of priming induced by 

conflict demands of the previous trial type (i.e., previous trial is either congruent or incongruent). 

Engagement of the conflict system on the preceding trial should ready the system for 

reengagement. Group-level random-effects two-sample t-tests were used to test for group 

differences in neural activity during (1) cognitive conflict (I-C), and (2) conflict regulation (iI-

cI).  

 5.2.5.3 Resting-state: Connectivity analyses were performed using the CONN fMRI 

functional connectivity toolbox (version 12.1; www.nitrc.org/projects/conn). Resting-state fMRI 

volumes were submitted to seed-based connectivity analyses to assess connectivity within the 

SN, and between the DMN and SN. First, seed time series data were extracted from SN and 

DMN masks comprising 6 mm radii spheres centered at Montreal Neurological Institute (MNI) 

coordinates of peak-valued loci as determined by group averaged independent components 

analysis of intrinsic functional networks identified in an independent N = 65 pediatric sample 

(Thomason et al., 2011): (41, 21, -5), (-2, 23, 33), and (-46, 15, -5) for the SN, and (5, -53, 13), (-

2, 57, -18), and (52, -63, 26) for the DMN, see Figure S2 in the online version of this paper4. 

Correlation estimates controlled for estimated translational and rotational motion as well as a 

white matter and cerebral spinal fluid nuisance time course. A band-pass filter was applied to 

investigate low-frequency correlations (between 0.01 and 0.1 Hz; Van Dijk et al., 2010). Pearson 

bivariate correlation coefficients were calculated between average time courses in the SN seed 

region mask and all other voxels of the brain. Group-level random-effects two-sample t-tests 

were used to test for group differences in intrinsic connectivity of the SN, and connectivity 

between the DMN and key SN regions.  

																																																								
4http://www.sciencedirect.com.proxy.lib.wayne.edu/science/article/pii/S2213158215000741 
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 5.2.5.4 Regions of interest: To examine the relevance of intrinsic SN connectivity for 

neural engagement during a cognitive task, all between-group effects were considered within SN 

regions known to be recruited in the conflict task: (i) bilateral amygdala (left, x = -30, y = -6, z = 

-14; right; x = 32, y = 0, z = -12), (ii) dACC (x = 2, y = 32, z =31) and (iii) rFIC (x = 40, y = 30, z 

= -7) using coordinates derived from our prior work (Etkin et al., 2006, Egner et al., 2008), and 

(iv) a mid-posterior insula region (x = -38, y = -13, z = -8) that showed higher responses in adults 

with PTSD during a similar task (Bruce et al., 2012). Regional masks (10 mm radii spheres) 

were created around each peak and then intersected with a gray matter mask. Group differences 

were examined within each region separately using a threshold of p < 0.05, small-volume family-

wise error (FWE) corrected.  

 5.2.5.5 Exploratory whole-brain results: Between-group whole-brain effects of I-C are 

also reported at a threshold of p < 0.005, cluster minimum= 10 voxels. This threshold was 

derived from suggested standards for whole-brain analyses (Lieberman and Cunningham, 2009). 

 5.2.6 Relations Among Measures 

5.2.6.1 Correlations among measures: Average signal change/connectivity strength was 

extracted from peaks of group difference (4 mm radii spheres) and plotted for visualization, 

and/or submitted to 4 planned Pearson correlation analyses in IBM SPSS v.22 to evaluate 

correspondence amongst brain activation, connectivity, task performance, and symptom severity. 

Specifically, we tested for relations between insula connectivity and (i) insula reactivity to 

conflict, (ii) behavioral response to conflict, and (iii) RS, and (iv) between insular and behavioral 

responses to conflict. All coordinates provided in this report are given in MNI convention. 

5.2.6.2 Mediation analysis: PROCESS software v.2.11 (Hayes, 2013) implemented in 

SPSS was used to test for the mediating effects of insula-SN connectivity in the association 
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between trauma exposure and RS. We focused on RS due to prior research documenting 

relations between neural effects related to trauma exposure and this symptom dimension 

(Bogdan et al., 2013, Marusak et al., 2014a). Relations between neural connectivity and 

symptoms related to negative valence (anxiety, depression) were also examined. The mediation 

model assumes significant relations between trauma exposure and connectivity, and between 

connectivity and RS. Connectivity values were extracted from the insula region showing 

increased SN connectivity in trauma-exposed youth. We then evaluated the correspondence 

between connectivity strength and RS. This approach uses bootstrapping, and indirect effects are 

considered significant when confidence intervals do not overlap zero (Hayes, 2013).  

5.3 Results 

 Trauma and comparison groups were matched on age, sex, pubertal maturation, IQ, race, 

annual household income, and movement during both fMRI experiments (Table 6). Two trauma 

participants were left-handed. Groups did not differ on RS, anxiety, or depressive symptoms 

(Table 6). Participants also did not differ on ratings of state anxiety obtained via visual analog 

scale (VAS), t(31) = 0.08, p = 0.94. Lack of differences between groups in state and trait mood 

symptoms suggests that observed effects are not influenced by group differences in fear and 

anxiety.  

 5.3.1 Greater Behavioral Decrements to Conflict in Youth Exposed to Trauma  

Consistent with the conflict effect, incongruent trials (relative to congruent trials) caused 

significant accuracy decreases and slowing in reaction time (RT) across the sample, accuracy: 

t(32) = 3.26, p = 0.003; RT: t(31) = 3.8, p = 0.001. Relative to comparison youth, trauma 

participants showed a greater impairment in accuracy for incongruent vs. congruent trials (I-C), 

t(31) = 3.8, p < 0.001 (Figure 12B). Specifically, conflict trials caused ~8% loss in accuracy in 
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trauma-exposed youth, while performance was relatively consistent across incongruent and 

congruent trials in comparison youth. This is in line with the notion that trauma-exposed youth 

show greater behavioral interference by task-irrelevant distracters. Breakdown by trial type (I,C; 

see Figure S2 in online data supplement) showed that this group difference was driven by lower 

accuracy in trauma participants during incongruent rather than congruent trials (group x trial-

type interaction, F(1,31) = 14.42, p = 0.001). No group differences in RT interference or conflict 

regulation were observed, p’s > 0.17 (Table 7). Groups did not differ on overall task accuracy or 

RT (p’s > 0.29; Table 7).  

 

Table 7. Behavioral performance on the conflict task by group 
 

  
Trauma         
(n = 14) 

Comparison     
(n = 19) 

p-
value 

Overall ACC (%), m (SD) 84.3% (8.87%) 87.96% (10.58%) 0.3 
Overall RT (ms), m (SD) 802.24 (200.31) 879.54 (216.55) 0.31 
Conflict Regulation ACC (%)a, m (SD) -1.85% (9.08%) 1.3% (6.8%) 0.18 
Conflict Regulation RT (ms)a, m (SD) 27.37 (61.33) -2.56 (61.63) 0.26 
aConflict regulation is defined by postincongruent incongruent trials minus postincongruent congruent  
trials (iI-cI). For ACC, lower numbers indicate greater performance decrements for incongruent relative 
to congruent trials. For RT, higher numbers indicate greater slowdowns for incongruent relative to  
congruent trials. P-values derived from two-sample t-tests. Abbreviations: mean, m; standard deviation,  
SD; reaction time, RT; accuracy, ACC; milliseconds, ms. 

 

 5.3.2 Trauma-Exposed Youth Show Elevated Insula Reactivity to Conflict 

 We observed greater rFIC response to conflict (I-C) in trauma-exposed relative to 

comparison youth, x = 32, y = 34, z = -10, Z = 2.98, pFWE = 0.031, Figure 13A. Across the 

sample, higher rFIC reactivity was associated with greater performance decrements to conflict (I-

C), r(33) = -0.375, p = 0.032. A similar pattern was observed in left mid-posterior insula; 

trauma-exposed youth showed higher response to conflict (x = -34, y = -10, z = 10, Z = 3.89, 

pFWE = 0.002) which was associated with greater performance decrements, r(33) = -0.433, p = 
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0.012, Figure 13B. Amygdala and dACC SN regions did not show group differences in 

responses to conflict, and neural activity did not differ between groups during conflict regulation 

(iI-cI). Exploratory whole-brain effects of I-C are provide in Table S2 (see online data 

supplement). Briefly, trauma-exposed youth showed higher response to conflict (I-C) in the FIC, 

putamen, inferior parietal lobe, and sensorimotor areas; comparison youth showed higher 

response to conflict in the inferior parietal lobe.  

 

 
Figure 13. Trauma-exposed youth show greater (A) right fronto-insular cortex (rFIC) and 
(B) left mid-posterior insula response to conflict, that correlates with greater performance 
decrements. Fronto-insular response to conflict is exaggerated in trauma-exposed youth, 
especially those that demonstrate large interference values (incongruent-congruent trials [I-C]). 
Clusters are significant at pFWE < 0.04, small-volume corrected. X, Y, Z coordinates are given 
in MNI convention. Error bars represent standard error.  
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 \5.3.3 Aberrant Salience Network (SN) Connectivity in Trauma-Exposed Youth 

 Relative to comparison participants, trauma-exposed youth demonstrated increased SN 

connectivity within the left amygdala (x = -28, y = -6, z = -18, Z = 3.13, pFWE = 0.046; Figure 

14A) and left middle insula (x = -28, y = 8, z = -16, Z = 3.98, pFWE = 0.011; Figure 14C), and 

reduced SN connectivity in the right dACC (x = 4, y = 36, z = 34, Z = 3.14, pFWE = 0.044; 

Figure 14B). Increased SN connectivity in the left middle insula was associated with higher rFIC 

response to conflict (I-C; Figure 14D), r(33) = 0.516, p = 0.002, and greater performance 

decrements to incongruent trials, although the latter effect was a non-significant trend, r(33) = -

0.335, p = 0.057. SN connectivity across the sample is presented in Figure S3 (see online data 

supplement).     

 
Figure 14. Group differences in salience network (SN) connectivity. Trauma-exposed youth 
show increased amygdala (AMY), A, decreased dorsal anterior cingulate cortex (dACC), B, and 
increased middle insula (INS), C, to SN signal covariance. Increased SN connectivity within the 
left insula (x = -28, y = 8, z = -16) was associated with greater right fronto-insular (x = 32, y = 34, 
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z = -10) response to conflict, D. Results are significant at pFWE < 0.05, small-volume corrected. 
X, Y, Z coordinates are given in MNI convention. Error bars represent standard error.  
 

 5.3.4 Altered Connectivity within the Salience Network (SN) is Associated with 

Variation in Trait Reward Sensitivity (RS) 

Driven by prior work showing relationships between depressive symptoms and altered 

SN connectivity in the insula (Manoliu et al., 2013), and by our recent work showing 

associations between trait RS and altered function of emotional conflict neural systems in 

trauma-exposed youth (Marusak et al., 2014a), we tested associations between SN-insula 

connectivity and RS. Strength of SN connectivity was extracted from the peak of the insula 

region that showed higher connectivity in trauma-exposed youth. We then tested for associations 

between connectivity in this region and RS across the sample.  We observed that higher SN to 

left insula connectivity was associated with diminished RS, r(32) = -0.373, p = 0.036. Mediation 

analyses showed that the association between trauma exposure and RS was mediated by SN-

insula connectivity (β = -0.4, standard error (SE) = 0.21, lower limit confidence interval = -0.89, 

upper limit confidence interval = -0.007; see Figure 15). Neither anxiety nor depressive 

symptoms were related to SN connectivity in the insula (p’s > 0.27).  

 

 

Figure 15. Salience network (SN) connectivity within the insula mediates the relationship 
between trauma exposure and reward sensitivity (RS).  Unstandardized regression 
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coefficients and bias-corrected 95% confidence interval (CI) for the indirect effect from a 
bootstrap-mediation analysis. Specifically, trauma exposure led to diminished RS through 
increased SN connectivity within the insula. *p < 0.05.  
 
 
 5.3.5 Aberrant Connectivity between the Salience Network (SN) and Default Mode 

Network (DMN) in Trauma-Exposed Youth 

 Next, we evaluated connectivity between the SN and the DMN. As shown in Figure 16, 

trauma-exposed youth showed reduced DMN to SN connectivity, particularly in the dACC (x = 

2, y = 26, z = 40, Z = 4.05, pFWE = 0.011). DMN connectivity across the sample is presented in 

Figure S3 (see online data supplement). 

 

 

Figure 16. Altered connectivity between the salience network (SN) and the default mode 
network (DMN) in trauma-exposed youth. Trauma-exposed youth show lower DMN 
connectivity with the right dorsal anterior cingulate cortex (dACC), a key SN node. Resting-state 
functional connectivity is depicted as Fisher-transformed r values. Results are significant at 
pFWE = 0.011, small-volume corrected. Coordinates are given in MNI convention. Error bars 
represent SEM.  
 
 
5.4 Discussion 

Contemporary neurobiological models suggest that inappropriate assignment of saliency 

to external stimuli or internal mental events leads to aberrant interactions within and between 
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large-scale neurocognitive networks, and plays a significant role in several psychiatric disorders 

(Menon, 2011). Recent research in adults supports this conceptualization (e.g., Sripada et al., 

2012, Manoliu et al., 2013). However, it is unknown if changes are evident in the brain prior to 

the emergence of clinically significant symptoms; these may underlie vulnerability. The present 

study is the first to link early life trauma exposure – a major predisposing factor for the 

development of psychopathology – to dysfunctional architecture of large-scale neurocognitive 

networks in a sample of high-risk urban youth. We demonstrate increased SN connectivity 

within the insula in trauma-exposed youth that has cognitive repercussions: increased SN 

connectivity corresponds with suboptimal brain and behavioral responses during a conflict task. 

Further, we demonstrate that altered SN connectivity is associated with individual variation in 

positive valence systems. That is, higher SN connectivity within the insula was associated with 

lower RS. These results suggest that enhanced salience detection, diminished sensitivity to 

reward, and connectome-level brain changes may contribute to later cognitive and affective 

deficits observed in individuals who have experienced trauma. A schematic representation of the 

overarching framework is provided in Figure 17.  
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Figure 17. Schematic representation of (A) salience network (SN) organization and (B) 
model of SN dysfunction in youth exposed to trauma. (A) The normal function of the SN is to 
detect relevant internal and external cues among myriad inputs. Ventral sensory pathways, 
including the amygdala and mid-posterior insular regions, feed forward stimulus information to 
core SN regions (i.e., right fronto-insular cortex (rFIC) and dorsal anterior cingulate cortex 
(dACC)). Engaged rFIC may influence dominance in other neurocognitive systems that are 
relevant for goal-directed cognitive processes (e.g., conflict regulation). This is consistent with 
suggestions that the FIC is an integrative hub that filters how sensory inputs are further 
processed (Menon and Uddin, 2010). (B) The present results demonstrate that childhood trauma, 
a major predisposing factor for psychopathology, is associated with altered function and 
connectivity of the SN. Fitting with conceptual models of posttraumatic stress disorder (Patel et 
al., 2012) and major depressive disorder (Hamilton et al., 2012), changes within the SN may lead 
to a cascade of events that increase risk for cognitive and affective dysfunction hallmark of these 
disorders. Our results suggest that altered salience processing may underlie the link between 
early life trauma and development of psychopathology. Specifically, we observed greater 
performance decrements to conflict trials, which corresponded with increased fronto-insular 
responses in trauma-exposed youth. We also observed altered connectivity within the SN, and 
between the SN and the default mode network (DMN). Network-level disruptions may therefore 
underlie the observed sub-optimal brain and behavioral responses during the conflict task in 
trauma-exposed youth. Finally, strength of SN connectivity within the insula was associated with 
reduced reward sensitivity, an affective trait emerging as an important risk/resilience factor in the 
aftermath of early life trauma exposure.  

 

Trauma-exposed youth show elevated rFIC and left mid-posterior insula response to 

conflict relative to comparison youth. The latter is striking given that a similar left mid-posterior 
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insula region (x = -37, y  = -21, z = 12) was shown to be hyperreactive in women with PTSD 

during an emotional interference task analogous to the paradigm employed in the current study 

(Bruce et al., 2012). In that study, participants were instructed to indicate whether two 

nonemotional house stimuli in the horizontal axis were the same or different, while ignoring 

distracting emotion-face pairs in the vertical axis. Posterior insular regions are thought to interact 

with anterior fronto-insular regions to modulate autonomic reactivity to salient stimuli. Once a 

salient stimulus is detected, the rFIC initiates attentional control signals and facilitates network 

switching. In the current study, higher reactivity of both rFIC and mid-posterior insula to conflict 

was associated with greater performance decrements. This suggests that increased salience 

detection in fronto-insular regions may interfere with the ability to recruit higher-order cognitive 

systems that are necessary for task execution, or cause inappropriate engagement of higher-order 

systems to task-irrelevant, conflicting stimuli. 

 We observed greater contributions of the insula and amygdala to the SN in trauma-

exposed youth. This finding is consistent with prior research in adults with PTSD (Sripada et al., 

2012). Our results thus extend earlier observations and suggest that strengthening of connectivity 

within a network that detects salient external and internal events begins proximally to the 

traumatic experience, during youth. Moreover, we observed that patterns detected at rest 

corresponded with those observed during a neurocognitive task.  Specifically, SN connectivity 

was higher in the insula, which was more responsive to conflict in trauma-exposed youth. These 

converging results support the notion that elevated SN activity is a pervasive phenomenon that 

may affect these individuals across a variety of contexts. These data are also fitting with prior 

behavioral reports of sustained attention to extraneous stimuli in youth who have endured early 

life trauma (Pechtel and Pizzagalli, 2011).  Inappropriate assignment of salience to mundane 
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events could interfere with ongoing cognitive or affective processes by biasing attentional 

resources. For instance, elevated salience detection could diminish a child’s ability to focus on 

the task at hand, or to regulate emotional responses.  

  Trauma and comparison groups did not differ on demographic factors measured, allowing 

us to compare the effects of trauma exposure in groups that were similar in sociodemographic 

risk. Given also that the trauma group did not present with marked clinical symptomology 

relative to the comparison group, observed neural changes may represent either risk or adaptation 

to adverse early environments. Our results support the former. Specifically, we observed that 

youth showing the most aberrant pattern of insula-SN covariance (e.g., elevated connectivity) 

showed diminished levels of RS. RS is an affective trait that may contribute to the emergence of 

stress-related psychopathology during adolescence (Bogdan et al., 2013) and as such, 

dysfunctional SN connectivity within the insula may represent a neural substrate of increased 

risk. Longitudinal follow-up planned in this sample may allow for further evaluation of this 

potential mechanism.  

 Our analyses indicate that SN connectivity is lower in the dACC in trauma-exposed 

youth. This is in contrast to the observed strengthening of SN connectivity in the amygdala and 

middle insula. This result suggests reduced reliance on a core SN region (i.e., dACC), with a 

concomitant increase in regions thought to carry salient interoceptive, homeostatic and emotional 

information to core SN nodes (i.e., amygdala, middle insula). In line with a recent conceptual 

framework (Menon, 2011), we demonstrate a link between aberrant connectivity of the rFIC 

within the SN and aberrant connectivity between the SN and DMN, a network involved in self-

referential processing (Buckner et al., 2008). Prior research shows that altered connectivity of 

large-scale neural networks has relevance for mental health. For instance, depressed adults show 
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altered connectivity within the SN’s rFIC and strength of connectivity relates to symptom 

severity (Manoliu et al., 2013). The network-level brain changes observed in the present study 

therefore hold implications for psychiatric risk. Altered network connectivity may also provide 

an avenue for intervention. For example, a recent study showed that transcranial magnetic 

stimulation (TMS) was capable of attenuating aberrant network connectivity in depressed 

individuals by modulating interactions between networks (Liston et al., 2014), an encouraging 

result.  

Study limitations warrant mention. First, sample size was limited, and replication in 

larger samples is warranted to improve generalizability of the observed effects. Thus, results are 

presented as preliminary, but highlight important neural and behavioral differences in trauma-

exposed youth in an understudied population of urban-dwelling, minority youth with a high 

stress burden. Next, we lack information about the onset (age) and duration of trauma 

experienced by these study participants. While retrospective analyses show that trauma onset and 

type relate to distinct emotional outcomes (English et al., 2005), prior studies also document 

nonspecific effects of these variables on outcomes (Arata et al., 2007, Collishaw et al., 2007) and 

some suggest that disentangling unique effects may result in overly narrow interpretations 

(Green et al., 2010). Future studies should also consider obtaining trauma documentation beyond 

self- and parent-report measures (e.g. positive forensic investigation by Child Protective 

Services). Next, it is unclear why groups did not differ in levels of internalizing symptomology 

(anxiety, depression, RS). This may be because both groups were drawn from the same 

sociodemographic risk community, and did not differ on IQ, race, or income. Comparing groups 

with similar backgrounds provides a unique opportunity to isolate effects of trauma in the 

context of high-risk youth. However, future research might consider comparing trauma groups 
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with and without diagnoses or presence of elevated symptom levels. Additionally, since this 

research is cross-sectional, we cannot examine which, if any, of these participants will go on to 

develop stress-related clinical disorders. While this work provides the first characterization of 

SN integrity and conflict systems in trauma-exposed youth at high risk for clinical disorders, 

future longitudinal work is needed to evaluate disease trajectories. Finally, while we observed a 

significant relationship between trauma and SN function, other factors are likely to influence and 

be influenced by SN function, such as age and gender. Effects of additional factors and their 

potential interactions with trauma is important for future work that may seek to develop 

personalized interventions to promote optimal outcomes in children who have experienced 

trauma.  

 5.4.1. Conclusions 

 The present results demonstrate a compelling pattern of SN dysfunction, particularly in 

the insula, in youth exposed to trauma. We show that trauma-exposed youth are more susceptible 

to interference during conflict and this correlates with higher fronto-insular responses to conflict, 

and increased tethering of the insula to the SN. We therefore provide evidence of trauma-related 

changes across multiple domains of neural function, and show that the observed effects have 

relevance for behavior. Our data also suggest a direct link between connectome-level brain 

organization and specific symptom dimensions associated with psychiatric risk. In particular, 

increased insula engagement in the SN was associated with diminished RS, an affective trait that 

is emerging as a critical risk/resilience factor in the aftermath of stress. Overall, these results 

support the notion that childhood trauma exposure is associated with disrupted saliency 

processing at the level of large-scale neural networks. Our findings are preliminary, but may aid 

the formulation of hypotheses about neural processing differences that result from significant 
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traumatic life events. Further research will be needed to advance discovery in this area to 

development of behavioral interventions, a much-needed direction for follow-up work. For 

instance, mindfulness, cognitive training, and neural stimulation have potential to quell 

overactive SN nodes and alter the functional connectome (Lutz et al., 2013, Liston et al., 2014). 
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CHAPTER 6: CONCLUSION 

6.1 Summary of findings 

 A series of studies is outlined in this dissertation that reveal neural impacts of childhood 

trauma in children and adolescents (youth). Relative to matched comparison youth, trauma-

exposed youth show altered neural response and FC in core emotion processing brain regions, 

e.g., amygdala, pgACC/sgACC, insula. Similar FC alterations are detected at-rest, when youth 

are not actively engaging in emotion processing (see Chapters 3 and 5). The major findings of 

these studies are summarized and their potential implications are further discussed, below.  

 Given the central role of the amygdala in emotion processing, we began with a study 

evaluating structure and function of the amygdala (Chapter 2). We found that the amygdala was 

more responsive to salient social cues in youth carrying a particular variant of the oxytocin 

receptor gene (A allele), and that this effect was amplified in youth with higher levels of early 

stress exposure. Expanding on these findings, we found that exposure to childhood trauma was 

associated with altered resting-state FC of the amygdala with sgACC, a critical emotion 

regulation pathway (Chapter 3). Trauma-exposed youth also showed heightened amygdala 

response to emotional conflict, and lower amygdala-pgACC FC during emotion regulation 

(Chapter 4). In Chapter 5, we expanded our view to test how trauma impacts functional neural 

responses, as well as FC within and between relevant networks. We found heightened neural 

response to conflict in the insula, a key salience network region, that corresponded with altered 

FC of the salience network.  

 As discussed in Chapter 1, emotion systems are critical for lifelong health and wellbeing. 

Disruptions in these systems are hallmark of several common debilitating psychiatric disorders, 

including anxiety, depression, and PTSD. Here, we discovered neurobehavioral alterations in 
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youth who have experienced trauma, one of the most potent risk factors for psychopathology, 

during a time that marks the beginning of a high-risk period for onset of psychiatric disorders 

(late childhood/early adolescence; Angold et al., 1998). Thus, observed neurobehavioral changes 

may serve as potential biomarkers of risk for later psychopathology.  

 Importantly, we find that neurological changes associated with trauma exposure were 

also associated with specific behavioral and symptom dimensions. In particular, trauma-exposed 

youth were less able to regulate emotional conflict (Chapter 4) and were more susceptible to 

distracting emotional cues (Chapters 2 and 5). Further, we found that neurobehavioral alterations 

were associated with RS rather than NA. In particular, youth with higher neurobehavioral 

impairment reported lower levels of RS, a finding that is further considered, below. Overall, 

these findings support the clinical and behavioral relevance of observed neurological changes.   

 Research into the neurobehavioral consequences of trauma in youth is motivated by the 

strong and pervasive link between childhood trauma and psychopathology (Kessler et al., 2010). 

Empirically based interventions that are capable of diminishing risk and/or circumventing 

development of psychopathology are badly needed for the 35 million US children affected (Child 

and Adolescent Health Management Initiative; 2012). We believe that the research described in 

this dissertation is an important first step towards this goal, and outline future directions and 

potential avenues for intervention, below.  

6.2 Future research directions 

 One important future direction will be to identify which neural changes precede onset of 

disorder and which are associated with resiliency. Here, we attempted to address this by linking 

observed neurobehavioral changes to symptom levels, and found that youth with the most 

aberrant neurobehavioral patterns reported lower RS. However, longitudinal research is needed 
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to address whether these changes predict onset of disorder. Longitudinal research is also needed 

to identify potential mediators and buffers of risk, e.g., genetic variants, expressed emotion in the 

family, and neighborhood context. Longitudinal research may also provide important clues about 

the role of puberty in the pathophysiology of trauma-related psychopathology. This may provide 

greater mechanistic insight into the increased prevalence of emotional disorders in females 

relative to males that emerges after the onset of puberty (Angold and Costello, 2006). 

 Another layer of complexity that will be better addressed by longitudinal research is 

trajectories of brain maturation. Structural neuroimaging studies have found that trajectories of 

neurobiological change may be more predictive of outcomes than a single measurement at one 

time point (Shaw et al., 2006). Within-individual trajectories, only accessible in longitudinal 

studies (Kraemer et al., 2000), should therefore allow for better characterization of 

developmental deviations related to trauma exposure. Trajectory analyses can reveal shifts in the 

rate, timing (i.e., ages) or shape (e.g., inverted U, quadratic) of a developmental trajectory, and 

the impact of different characteristics of the trauma (e.g., age of onset, chronicity). Longitudinal 

research will provide a more complete understanding of how genetic and environmental factors 

influence brain, behavior, and affective experience in youth.  

 Future studies with larger samples will be able to more fully address the interaction 

between genes and childhood trauma (GxE). In Chapter 2, we found that a common 

polymorphism in the oxytocin receptor was associated with altered structure and function of the 

amygdala in youth. We also found evidence for a GxE effect, such that the combination of higher 

levels of environmental adversity and the OXTR A allele was associated with the greatest 

neurobehavioral dysfunction. These findings are consistent with a stress diathesis GxE model, 

which holds that the environment is necessary to unmask an underlying genetic susceptibility 
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(Goforth et al., 2011). However, stress diathesis is not the only GxE model, and some of our 

prior findings are more in line with a bioecological GxE model. In contrast to stress diathesis, the 

bioecological model predicts greater heritability in the presence of advantageous proximal 

environments (Bronfenbrenner and Ceci, 1994). For example, we previously found that gray 

matter volume of hippocampus and sgACC varied with BDNF genotype only in youth without 

histories of trauma exposure. No effect of BDNF on corticolimbic volume was evident in 

trauma-exposed youth (Marusak et al., 2015b), which may reflect the restriction of genetic 

disparity by a suboptimal environment. Taken together, it is apparent that the pattern of GxE 

may differ based on the brain area or gene/molecular system of interest (e.g., oxytocin vs. 

BDNF). Multiple GxE models should be considered in the study of environmental adversity.  

6.3 Reward sensitivity as a potential marker of stress susceptibility 

 We found that neurobehavioral alterations associated with trauma exposure were 

exaggerated in youth with low levels of RS. There is a rich theoretical background purporting 

that low RS is a vulnerability factor for the development of affective disorders (see Bogdan et al., 

2013). Research shows that reward processing deficits are particularly relevant for the onset of 

psychopathology during adolescence, predicting increases in depressive symptoms (Morgan et 

al., 2013), greater illness severity and suicidality (Gabbay et al., 2015), and poorer response to 

evidence-based treatments (McMakin et al., 2012). Moreover, changes in reward processing are 

thought to contribute to key affective and motivational features of anhedonia, a cardinal 

symptom of depression (Treadway and Zald, 2011). Our findings suggest that stress-induced 

changes in RS could be a potential marker of susceptibility to affective disorders.  

 An emerging body of research supports the notion that reduced RS is a promising 

mechanism underlying the link between stress exposure and emotional psychopathology 
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(Bogdan and Pizzagalli, 2006). In experimental animals, chronic stress can diminish reward-

seeking behavior and weaken preferences for sucrose solutions (Pryce et al., 2004, Willner, 

2005). Research suggests that these effects are mediated by stress-induced changes in the HPA 

axis. In humans, variation in HPA axis activity and response has been linked to functional and 

structural differences in striatal and other corticolimbic regions that are involved in reward 

processing (see Bogdan et al., 2013). Consistent with this, stress-related HPA axis activation has 

been shown to directly alter function of dopamine (Piazza et al., 1996, Pascucci et al., 2007), a 

key neuromodulator in the reward system.  

 At first glance, it seems counterintuitive that trauma-related changes in prototypical fear 

and anxiety regions (e.g., amygdala, insula) are associated with self-reported RS rather than NA 

– which is more typically associated with feelings of fear and anxiety.  As we saw in Chapter 1, 

the amygdala and insula are key nodes of the salience network, involved in biasing both positive 

and negative emotional processing. The amygdala and insula have direct projections to the 

ventral striatum, which are thought to modulate learning and stimulus-response valuation of 

potential rewards (see review by Haber and Knutson, 2010). Over time, heightened sensitivity to 

emotionally laden materials could result in diminished engagement of approach- and reward-

related circuitry in trauma-exposed youth. In addition, repeated stress diminishes dopamine 

signaling within the striatum (Gambarana et al., 1999) and amygdala (Inglis and Moghaddam, 

1999), which could also suppress reward behavior. A recent study in mice demonstrated that 

repeated stress in childhood led to increased risk for anxiety- and depression-related behaviors in 

adulthood, and this effect was mediated by changes in dopamine D3 receptor expression and 

altered function in the amygdala and striatum (Seo and Kuzhikandathil, 2015).  
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 The link between childhood trauma and RS is further supported by recent neuroimaging 

research. Individuals exposed to childhood trauma report elevated symptoms of anhedonia and 

show diminished reward-related responses in the basal ganglia. These effects are present in 

adolescence and even decades later, into adulthood (Dillon et al., 2009, Hanson et al., 2015). 

Intact hedonic capacity and robust neural reward-related circuitry, in contrast, are thought to be 

protective against depressive symptoms in the aftermath of stress (Nikolova et al., 2012). 

Emerging data suggest that link between childhood trauma and mood disorders may be unique to 

traumatic stress experienced before ~age 10 (e.g., Hanson et al., 2015). Consistent with this, a 

recent study using data from a nationally representative US survey found that trauma during 

childhood, but not during infancy or adolescence, conferred significant risk for depression in 

adolescent girls (Marshall, 2016). Altogether, these findings suggest that reward systems might 

be particularly susceptible to traumatic stress experienced during childhood. It has yet to be 

determined if these changes are related to, or result from, heightened saliency processing.   

 To be a marker of stress-related vulnerability, neurological changes associated with low 

RS should predict subsequent increases in symptomology. To test this, we brought back a subset 

of youth (N = 21) from the research described in this dissertation. Controlling for baseline levels, 

low RS predicted higher internalizing, affective and PTSD problems two years later, r’s > 0.5, 

p’s < 0.02, as reported by the caregiver (Child Behavior Checklist, Parent Report; CBCL-PR; 

Achenbach, 1991). Additionally, we found that neural variation associated with low RS – 

namely, increased amygdala (Chapter 4) and insula response to conflict (Chapter 5), and 

increased insula-salience network FC (Chapter 5) - continued to predict low RS two years later, 

r’s < -0.6, p’s < 0.05. These findings lend preliminary support to the notion that low RS and 

associated neurological variation are potential markers of risk during the transition into 
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adolescence. This is especially important given that initial episodes of depression are likely to 

occur during this developmental transition (Lewinsohn et al., 1994, Kessler et al., 2001), 

conferring greater risk for depression in adulthood (Lewinsohn et al., 1999). Moreover, low RS 

during the transition into adolescence predicts later depressive disorder (Pine et al., 1999, Joiner 

et al., 2002, Forbes and Dahl, 2010).  

6.4 Potential implications for intervention 

 Identifying cross-cutting dimensions that transect an array of psychopathologies, such as 

RS, could improve detection of at-risk youth and also aid the design of targeted interventions in 

early life, prior to disease onset. If these findings are replicated in separate samples and in a 

longitudinal framework, low RS would be an important marker of risk and potential treatment 

target. This is significant because current empirically supported treatments (e.g., cognitive 

behavioral therapy) do not adequately resolve RS-related deficits among youth with emotional 

disorders (Kennard et al., 2006). Thus, interventions that enhance engagement in pleasant 

activities (e.g., behavioral activation; Jacobson et al., 2001) or teach regulatory strategies for 

sustaining positive affect (e.g., Positive Affect Stimulation and Sustainment; McMakin et al., 

2011) may be beneficial for youth with low RS.    

 Identified neurobehavioral changes associated with trauma exposure could provide 

additional avenues for intervention. In particular, we found heightened response in amygdala and 

fronto-insular cortex to distracting emotional information in trauma-exposed youth. Increased 

neural response was associated with lower behavioral performance, suggesting that heightened 

neural processing of emotional materials may be detrimental to cognitive functioning. Thus, 

strengthening top-down neural pathways involved in attentional orienting and regulation of 

emotional processing may be a useful remediation strategy for trauma-exposed youth. One such 
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strategy is attention bias modification treatment, which involves repeated training of attention 

allocation away from negative stimuli and toward neutral stimuli. This strategy is proven 

effective in reducing symptoms of anxiety (meta-analysis by Hakamata et al., 2010). There may 

be other ways to intervene early in the emotion detection process, at the level of salience network 

processing. For instance, explicit learning of an emotion regulation-related skill (e.g., 

suppression, cognitive reappraisal) might render that skill more automatic after sufficient 

practice and mastery (Gyurak et al., 2011). At least some of these interventional strategies might 

be implemented via hand-held or online training platforms that are age-appropriate, engaging, 

and easily accessible (e.g., Hardy et al., 2015). 

 A complementary intervention approach would be to reduce bottom-up signaling in the 

salience network, a network that monitors internal and external stimuli for emotional salience 

(Taylor et al., 2009). This might be achieved through mindfulness based interventions (e.g., 

meditation; Marchand, 2014) or real-time fMRI neurofeedback training (Paret et al., 2014), 

which can dampen activity in amygdala and insula. Pharmacotherapies can also have inhibitory 

effects on amygdala and insula activity, including the widely used selective serotonin reuptake 

inhibitors (Simmons et al., 2009, Godlewska et al., 2012). Given the link between individual 

variation in oxytocin neurobiology and amygdala responsivity observed in Chapter 2, 

pharmacotherapies that target the oxytocin system may be fruitful. In fact, intranasal 

administration of oxytocin is actively being investigated in adults for its utility in preventing the 

development of stress-related psychopathology and augmenting treatment response. Initial 

findings in this area in recently traumatized adults are variable, however, suggesting that greater 

understanding of doses and of interacting neuromodulatory systems (e.g., serotonin, dopamine) 

is needed (Taylor et al., 2014, Olff et al., 2015).  
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 Importantly, not all youth with histories of trauma reported low RS. This raises the 

subject of personalized interventions. Greater attention to dimensional symptom measures (e.g., 

RS, NA) can aid with the identification of at-risk youth, and suggest the most appropriate 

interventions. A one-size-fits all approach to intervention is not likely optimal, given that not all 

trauma-exposed youth will develop an emotional disorder, and some will develop other forms of 

psychopathology, e.g., substance abuse, ADHD. In this research, we focus on emotion 

processing systems for their central role in core components of emotional disorders. Evaluation 

of attentional and cognitive control pathways may unearth markers of externalizing or other 

types of psychopathology that are associated with childhood trauma. 

 Since neurobehavioral changes were evident in the trauma group regardless of RS levels, 

aberrant salience network functioning may represent a more broadband effect of vulnerability 

that is present even in those who do not yet report affective changes (e.g., low RS). 

Epidemiological studies show that neurobehavioral changes typically associated with NA in 

childhood (e.g., hypervigiliance, attentional deficits) often precede onset of RS-related 

symptomology in adolescence (Silk et al., 2012). Thus, interventions that target salience network 

systems may be useful for preventing subsequent development of low RS in at-risk youth.  

6.5 Different dimensions of childhood trauma 

 In the research described in this dissertation, childhood trauma was broadly defined to 

include different types of exposures, i.e., abuse, violence, and neglect. There is reason to not be 

too narrow, as different exposures seem to carry similar risk (Green et al., 2010). In addition, 

childhood adversities often co-occur and most individuals exposed to childhood trauma have 

experienced multiple types of trauma (Kessler et al., 2010, McLaughlin et al., 2012). Thus, 

constraining trauma types to narrow categories may result in findings that are not generalizable. 
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However, emerging research suggests the presence of two unique dimensions of childhood 

adversity that likely have different effects on neural development (McLaughlin et al., 2014). 

These are threat/victimization and deprivation/neglect. These represent abnormal environmental 

input (e.g., violence and abuse) and a lack of typical species-expected input (e.g., caregiver 

absence, neglect), respectively.  

 In our urban Detroit sample, the most common forms of trauma reported were domestic 

and community violence. This pattern is consistent with prior research in urban populations 

(Gillespie et al., 2009, Crusto et al., 2010), and suggests that observed neurobehavioral 

alterations may be more closely associated with early threat exposure rather than 

deprivation/neglect. Indeed, neglect and caregiver separation were relatively rare in this sample, 

endorsed less frequently than both physical and sexual abuse. Neurobehavioral alterations related 

to early deprivation may be better addressed by an ongoing and complementary line of research 

in orphanage-reared youth, as described in the Introduction (see also Tottenham, 2012). Such 

research benefits from the fact that the neglect/deprivation ends when stable families adopt the 

institutionalized youth, thus creating a sample of at-risk youth with variable lengths of exposure. 

We believe that there is great value in understanding the neurobehavioral correlates of trauma in 

urban youth, who represent a different population with different types of adversities (violence, 

abuse) and sociodemographic factors. According to a national survey, violence and abuse are 

also exceptionally pervasive, affecting more than 50% of US youth (Finkelhor et al., 2013). 

Urban youth are disproportionately burdened by victimization and associated negative outcomes 

(Gillespie et al., 2009, Lowe et al., 2014), providing an enriched sample at high risk.  

 In recognition that deprivation and threat likely have unique impacts on neural 

development (McLaughlin et al., 2014), we will narrow our focus to threat/victimization 
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(violence and abuse exposure) in future research. To enhance the generalizability of findings, we 

will not exclude youth who have experienced other dimensions of trauma. Rather, we will 

simultaneously measure and control for neurobehavioral effects related to neglect/deprivation.  

 In addition to type of trauma assessed, it is important to consider the selection of the 

matched comparison group. A comparison group drawn from different sociodemographic 

backgrounds makes it difficult to disentangle effects of trauma exposure from chronic 

environmental stress (e.g., neighborhood quality, socioeconomic status). Here, we chose to 

match comparison and trauma-exposed groups on sociodemographic variables that are known to 

influence neurobehavioral function (e.g., age, sex, race, income), or control for them in analyses. 

This approach attempts to equate environmental stressors between groups to better isolate effects 

related to trauma exposure. For further discussion of partcipant selection strategies, see review 

by (Thomason and Marusak, 2016).  

 The threat/victimization vs. deprivation/neglect framework put forth by McLaughlin and 

colleagues suggests that early threat exposure leads to increased amygdala sensitivity to salient 

emotional stimuli. Over time, elevated corticolimbic sensitivity will result in stronger 

representations of conditioned fear, weakening input of ventromedial prefrontal cortex (vmPFC; 

encompassing pgACC/sgACC) – a structure critical for emotion regulation. Reduced vmPFC 

recruitment over time may lead to accelerated pruning, resulting in reduced vmPFC thickness 

and/or lower vmPFC-amygdala FC observed here. This framework is consistent with our 

findings, but further imply that lower ability to modulate learned fear is a potential mechanism 

linking childhood trauma to emotional psychopathology. This neurobehavioral mechanism has 

not yet been tested in the context of childhood trauma.   
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6.6 Cognitive flexibility  

Results of this dissertation imply a simultaneous heightened sensitivity to salient 

emotional information and a lower ability to flexibly regulate emotion processing in trauma-

exposed youth. This pattern might reflect an adaptation that derives from an adverse rearing 

environment, allowing for rapid detection of associations between environmental cues and 

prediction of imminent threat. Adaptive functioning requires, however, that when environmental 

cues no longer predict adverse outcomes, it is essential to quickly update this learning and 

suppress fear responding. Cognitive inflexibility and abnormal persistence of learned fear may 

play a role in increasing risk for psychopathology. This is consistent with behavioral 

observations of trauma-exposed youth, who demonstrate rigid, inappropriate expression of 

learned fear (De Bellis and Zisk, 2014). Reduced ability to flexibly adjust learned fear, at the 

level of brain and/or behavior, may be a core marker of risk for pathology. 

One way to model fear learning in the laboratory is with Pavlovian fear conditioning, 

which involves the pairing of a previously innocuous cue (conditioned stimulus; CS+) with an 

aversive outcome (unconditioned stimulus, US). After repeated pairings with the US, 

presentation of the CS alone begins to elicit a conditioned fear response. Research in both 

humans and rodents show that the amygdala is critical for the acquisition and expression of 

conditioned fear (LeDoux, 2000). 

Learned fear is not immutable. Ways to flexibly adjust learned fear involve learning new 

associations, but in different ways. One is extinction, which involves the omission of an aversive 

outcome. Extinction learning occurs after repeated presentations of the CS in the absence of the 

US, forming a new memory that competes with the fear memory trace (Quirk and Mueller, 

2008). The reduction of fear following extinction learning depends on vmPFC suppression of 
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amygdala output. Importantly, extinction learning and its recall are context dependent, requiring 

contextual modulation via the hippocampus to trigger vmPFC-amygdala extinction circuitry 

(Quirk and Mueller, 2008). This is in contrast to fear learning, which is context independent. As 

such, stress-related abnormalities within the extinction circuitry that results in lower contextual 

modulation (via hippocampus), hyper-response to threat cues (via amygdala), or deficient fear 

modulation (via vmPFC) could lead to a behavioral phenotype of persistent overexpression of 

fear. These components can be teased apart in a fear- and extinction-learning paradigm.  

Another way to modify learned fear is with reversal learning, which involves the pairing 

of a cue or context with the opposite outcome. For example, a cue previously associated with a 

negative outcome is now associated with a positive outcome. Though fear reversal is less 

understood than fear extinction, there is evidence to suggest that vmPFC is also involved in 

signaling ‘safety’ or positive value for stimuli previously associated with an aversive US. The 

amygdala and striatum, in contrast, track the stimuli that predict the US (see Schiller and 

Delgado, 2010). Reversal of a context, but not a cue, appears to depend on the hippocampus 

(Levy-Gigi et al., 2011). An advantage of a reversal-learning paradigm is that it can test whether 

trauma-related changes are specific to the modulation of negative stimuli, or generalize to both 

positive and negative. Similarly, deficits in reversal of contexts vs. cues should provide insight 

into whether hippocampal-dependent contextual processing is affected. 

Research in adults with trauma exposure and stress-related psychopathology (e.g., PTSD, 

anxiety, depression) points to deficits in both extinction recall (typically tested 24 hr following 

extinction learning; Milad et al., 2009) and reversal learning (Levy-Gigi and Richter-Levin, 

2014). Behavioral deficits are accompanied by changes in the brain, particularly altered 

hippocampal-vmPFC FC, a pathway critical for the contextual modulation of learned fear. There 
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is also evidence for amygdala hyper-reactivity (Etkin and Wager, 2007), suggesting that 

amplified fear response may be a downstream consequence of impaired fear modulation. While 

we found similar functional neural changes here in trauma-exposed youth, the ability to modulate 

learned fear has yet to be tested as a core mechanism altered by early trauma in youth.   

We plan to expand on these findings in future work to test the flexible modulation of 

learned fear in trauma-exposed youth. Knowledge of the underlying neurobehavioral 

mechanisms altered by early trauma should provide critical insight into the link between early 

trauma and later psychopathology. Findings in this area have potential to inform the development 

of early interventions. For instance, poor contextual recall of extinction could motivate the 

development of remediation strategies that strengthen hippocampal-dependent learning 

processes. A deficit in extinction but not in reversal learning could imply that interventions that 

involve learning salient, new associations (e.g., a reward) to reduce fear might be superior to 

those utilizing an omission strategy (e.g., exposure-based therapy).  
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 Childhood trauma is one of the strongest risk factors for a range of common and 

debilitating neuropsychiatric disorders, including anxiety, depression, and posttraumatic stress 

disorder (PTSD). These emotion-related disorders have their roots in childhood and adolescence, 

underscoring a critical need to understand their biological bases in early life. In this dissertation, 

we evaluate how childhood trauma impacts emotion processing neurocircuitry in a sample of 

high-risk urban youth, ages 7-15. In four inter-related studies, we test neural function and 

functional connectivity of core emotion processing regions, including the amygdala, insula, and 

pregenual/subgenual anterior cingulate cortex (pgACC/sgACC). To examine the relevance of 

observed neurological changes, we evaluate behavioral performance on emotion processing 

neuropsychological tasks, as well as specific dimensions of subjective affective experience.  

 Results indicate that, relative to matched comparison youth, trauma-exposed youth have 

(1) increased neural response to salient emotional cues in amygdala and insula, (2) reduced 

functional connectivity between amygdala and pgACC/sgACC, a pathway critical for emotion 

regulation, and (3) altered within- and between-network connectivity of the salience network, 

involved in detecting and orienting attention to salient emotional stimuli. These neurological 
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changes are accompanied by behavioral alterations: trauma-exposed youth have a lower ability to 

ignore distracting emotional information, and to automatically regulate emotion. Additionally, 

observed neurobehavioral changes relate to a specific dimension of affective experience – reward 

sensitivity (RS), rather than negative affect. Moreover, trauma-exposed youth with the greatest 

neurobehavioral impairment report lower RS, suggesting reduced positive environmental 

engagement.   

 These results suggest that RS may be a marker of stress susceptibility, a notion supported 

by emerging basic and clinical research. Based on our neurobehavioral findings, we discuss 

potential implications for intervention, and relay an emerging framework that dissociates 

neurological effects of different trauma types (i.e., threat/victimization vs. deprivation/neglect). 

In closing, we discuss future directions, including longitudinal research and evaluating the 

modulation of learned fear – a neurobehavioral mechanism that depends on emotion processing 

neurocircuitry, but has yet to be tested in trauma-exposed youth.  
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 For as long ago as I can remember, I have been interested in the intersection of behavior 

and biology. This interest narrowed to the field of neuroscience when I recognized the dramatic 

and sometimes devastating consequences that brain-based disorders can have on human 

behavior, health, and wellbeing. By shadowing psychiatrists and neuroscientists at the UCLA 

Mood Disorders Research Program, I was fortunate to witness firsthand the clinical, behavioral, 

and neurological manifestation of affective disorders. I was fascinated by the fact that these 

common and debilitating disorders are biologically rooted in brain circuitry.   

 The importance of understanding the biological bases of affective disorders became all 

the more lucid and urgent to me during my senior year of college. A classmate and friend, whose 

depression was unknown to most all, took his own life just months before our college graduation. 

I am grateful to be receiving the training I need to become an affective neuroscientist striving to 

better understand and prevent these insidious disorders from taking root in young people.  

 

In memory of Noah.  
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